##plugins.themes.ibsscustom.article.main##

Chekushkin A. A., Avsiyan A. L., Lelekov A. S. Productivity of Arthrospira platensis Gomont 1892 culture under natural light conditions. Proceedings of the T.I.Vyazemsky Karadag Scientific Station - Nature Reserve of the Russian Academy of Sciences, 2022, no. 4 (24), pp. 33-44. https://doi.org/10.21072/eco.2022.24.02

##plugins.themes.ibsscustom.article.details##

Abstract

The growth of the Arthrospira platensis batch culture under natural and artificial illumination at different culture layer depth and the amount of photosynthetically active radiation (PAR) energy supplied to the pond surface were investigated. The experiments were conducted in horizontal photobioreactor during 2021–2022 in the Sevastopol area. The calculation of the average A. platensis culture productivity in the linear growth area and the maximum culture density at the stationary phase was carried out. It was shown that under natural illumination, the average A. platensis culture productivity in the linear growth phase varied between 2.8 and 12.2 g DW∙m-2 ∙day-1, with a maximum culture density varying from 43 to 120 g DW∙m-2. Taking into account the partial light reflection from the surface of the algobiotechnological unit, the total value of solar energy in the PAR area per day was determined, which ranged from 1.95 to 8.73 MJ∙m-2 in January and July, respectively. It was noted that A. platensis cultivated in the ponds with different culture layer depth yields in 7 days were the same and amounted to 70–75 g DW∙m-2. In the control experiment under artificial illumination, no effect of CO2 on the growth rate of A. platensis was detected: average productivity was 13–14 g DW∙m-2 ∙day-1 both with CO2 addition and without it, the maximum culture density was 125 g DW∙m-2. Based on the analysis of the obtained experimental and published data, it was shown that the dependence of average productivity on irradiance in the PAR area can be described by a polygonal line. In the light limitation area, the slope ratio of the linear regression was 2.3 g∙MJ-1. Considering the average biomass caloric content, the average photosynthesis efficiency was 5.3 %.

Authors

A. A. Chekushkin

postgraduate student, leading engineer

A. L. Avsiyan

junior researcher

A. S. Lelekov

PhD, senior researcher

References

Белянин В. Н., Сидько Ф. Я., Тренкеншу А. П. Энергетика фотосинтезирующей культуры микроводорослей. – Новосибирск : Наука, 1980. – 136 с.

Геворгиз Р. Г., Малахов А. С. Пересчёт величины освещённости фотобиореактора в величину облучённости: учеб.-метод. пособие. – Севастополь : Колорит, 2018. – 58 с.

Геворгиз Р. Г., Шматок М. Г. Лелеков А. С. Расчёт КПД фотобиосинтеза у низших фототрофов. 1. Непрерывная культура // Экология моря : сб. науч. тр. / НАН Украины, Ин-т биологии юж. морей им. А. О. Ковалевского. – Севастополь : ЭКОСИ-Гидрофизика, 2005. – Вып. 70. – С. 31–36.

Минюк Г. С., Дробецкая И. В., Тренкеншу Р. П., Вялова О. Ю. Ростовые и биохимические характеристики Spirulina (Arthrospira) platensis (Nordst.) Geitler при различных условиях азотного питания // Экология моря : сб. науч. тр. / НАН Украины, Ин-т биологии юж. морей им. А. О. Ковалевского. – Севастополь : ЭКОСИ-Гидрофизика, 2002. – Вып. 62. – С. 61–66.

Солнечная радиация и солнечное сияние // Научно-прикладной справочник по климату СССР. Сер. 3, Многолетние данные. Ч. 1–6 / Гос. ком. СССР по гидрометеорологии, Сев.-Кавказ. территор. упр. по гидрометеорологии. – Ленинград : Гидрометеоиздат, 1990. – Вып. 13. – С. 70–145.

Справочник по климату СССР. Вып. 10. Украинская ССР. Ч. 1. Солнечная радиация, радиационный баланс и солнечное сияние / Гл. упр. гидрометеорол. службы при Совете Министров СССР, Упр. гидрометеорол. службы УССР, Киев. гидрометеорол. обсерватория. – Москва : Гидрометеоиздат, 1966. – 124 с.

Стельмах Л. В. Суточные изменения фотосинтеза морских планктонных водорослей : автореф. дис. … канд. биол. наук : 03.00.18. – Севастополь, 1985. − 23 с.

Тренкеншу Р. П., Лелеков А. С., Новикова Т. М. Линейный рост морских микроводорослей в культуре // Морской биологический журнал. – 2018. – Т. 3, № 1. – С. 53–60. – https://doi.org/10.21072/mbj.2018.03.1.06

Тренкеншу Р. П., Лелеков А. С. Моделирование роста микроводорослей в культуре. – Белгород : Константа, 2017. – 152 с. – https://doi.org/10.21072/978-5-906952-28-8

Чекушкин А. А., Лелеков А. С. Продуктивность культуры Phaeodactylum tricornutum в условиях естественного освещения // Актуальные вопросы биологической физики и химии. – 2021. – Т. 6, № 4. – С. 591-596.

Чекушкин А. А., Лелеков А. С., Геворгиз Р. Г. Сезонная динамика предельной продуктивности в горизонтальном фотобиореакторе // Актуальные вопросы биологической физики и химии. – 2020. – Т. 5, № 3. – С. 405–411.

Benavides A., Ranglová K., Malapascua J. R., Masojidek J., Torzillo G. Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond // Algal Research. – 2017. – Vol. 28. – Р. 48–56. – https://doi.org/10.1016/j.algal.2017.10.007

Borowitzka M. A. Commercial production of microalgae: ponds, tanks, tubes and fermenters // Journal of Biotechnology. – 1999. – Vol. 70, iss. 1/3. – P. 313–321. – https://doi.org/10.1016/S0168-1656(99)00083-8

Borowitzka M. A., Borowitzka L. J. Microalgalbiotechnology.–Cambridge:CambridgeUniv.Press, 1998. – 480 p.

Freitas B., Cassuriaga A., Morais M. G., Costa J. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima // Bioresource Technology. – 2017. – Vol. 238. – P. 248–253. – https://doi.org/10.1016/j.biortech.2017.04.031

Golterman H. L. Physiological limnology: an approach to the physiology of lake ecosystems. – Amsterdam [etc.] : Elsevier, 1975. – 489 p.

Hase R., Oikawa H., Sasao C., Morita M., Watanabe Yo. Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City // Journal of Bioscience and Bioengineering. – 2000. – Vol. 89, iss. 2. – Р. 157–163. – https://doi.org/10.1016/S13891723(00)88730-7

Jallet D., Caballero M. A., Gallina A. A., Youngblood M., Peers G. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime // Algal Research. – 2016. – Vol. 18. – Р. 51–60. – https://doi.org/10.1016/j.algal.2016.05.014

Lafarga T., Fernandez-Sevilla J. M., Gonzalez-Lopez C., Acien-Fernandez F. G. Spirulinaforthefood and functional food industries // Food Research International. – 2020. – Vol. 137. – [Art. nr] 109356. – https://doi.org/10.1016/j.foodres.2020.109356

Maltsev Ye., Maltseva K., Kulikovskiy M., Maltseva S. Influence of light conditions on microalgae growth and content of lipids, carotenoids and fatty acid composition // Biology. – 2021. – Vol. 10, iss. 10. – [Art. nr] 1060. – https://doi.org/10.3390/biology10101060

Markou G., Angelidaki I., Nerantzis E., Georgakakis D. Bioethanol production by carbohydrateenriched biomass of Arthrospira (Spirulina) platensis // Energies. – 2013. – Vol. 6, iss. 8. – P. 3937–3950. – https://doi.org/10.3390/en6083937

NASA Prediction of Worldwide Energy Resources : The POWER Project : [website] / Langley Research Center. – URL: https://power.larc.nasa.go (date of access: 01.07.2022).

Nowicka-Krawczyk P., Mühlsteinová R., Hauer T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria) // Scientific reports. – 2019. – Vol. 9. – [Art. nr] 694. – https://doi.org/10.1038/s41598-018-36831-0

Sotiroudis T. G., Sotiroudis G. T. Health aspects of Spirulina (Arthrospira) microalga food supplement // Journal of the Serbian Chemical Society. – 2013. – Vol. 78, no. 3. – P. 395–405. – https://doi.org/10.2298/JSC121020152S

Torzillo G., Sacchi A., Materassi R., Richmond A. Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors // Journal of Applied Phycology. – 1991. – Vol. 3, iss. 2. – P. 103–109. – https://doi.org/10.1007/BF00003691

Torzillo G., Accolla P., Pinzani E., Masojidek J. In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors // Journal of Applied Phycology. – 1996. – Vol. 8, iss. 4/5. – P. 283–291. – https://doi.org/10.1007/BF02178571

Van Wagenen J., Miller T. W., Hobbs S., Hook P., Crowe B., Huesemann M., Effects of light and temperature on fatty acid production in Nannochloropsis Salina // Energies. – 2012. – Vol. 5, iss. 3. – P. 731–740. – https://doi.org/10.3390/en5030731

Wu H., Li T., Lv J., Chen Z., Wu J., Wang N., Wu H., Xiang W. Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawatersupplemented medium in an outdoor raceway pond in winter // Foods. – 2021. – Vol. 10, iss. 12. – [Art. nr] 2974. – https://doi.org/10.3390/foods10122974

Zanolla V., Biondi N., Niccolai A., Abiusi F., Adessi A., Rodolfi L., Tredici M. Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors // Journal of Applied Phycology. – 2022. – Vol. 34, iss. 3. – P. 1189–1199. – https://doi.org/10.1007/s10811-022-02707-0

Zarrouk C. Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosyntèse de Spirulina maxima. – Paris : [s. n.], 1966. – 138 p.

Funding

Работа выполнена в рамках государственного задания ФИЦ ИнБЮМ по теме «Исследование механизмов управления продукционными процессами в биотехнологических комплексах с целью разработки научных основ получения биологически активных веществ и технических продуктов морского генезиса», No гос. регистрации 121030300149-0.

Statistics