Влияние сублетальных концентраций неорганической ртути на экспрессию белков RPA1 и Р53 головного мозга радужной форели (Oncorhynchus Mykiss)
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Аннотация
Исследование проводили с использованием в качестве тест-объекта радужной форели, подвергнутой воздействию неорганической ртути в концентрациях 25% ЛК50 и 50% ЛК50 в течение 2 и 7 дней. Полученные результаты показали, что снижение уровня белка р53 сопровождается повышением уровня протеина RPA1 в головном мозге рыб, обитающих в среде с сублетальными концентрациями препарата. Повышенная экспрессия RPA1 может быть одним из критических факторов клеточной адаптации при стрессе в головном мозге радужной форели, вызванном неорганической ртутью. Полученные результаты позволяют предположить, что Hgиндуцированная генерация АФК связана с модуляцией экспрессии как р53, так и RPA1 при клеточном ответе на цитотоксическое действие ртути. Снижение содержания протеина р53 и повышение уровня белка RPA1 в тканях головного мозга рыб под воздействием неорганической ртути установлено впервые. Выявленная регуляция белка RPA1 может служить частью клеточного ответа на разрывы ДНК, вызванные ионами неорганической ртути.
Авторы
Библиографические ссылки
Amlund H. Lundebye A.K., Berntssen M.H. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure // Aquat Toxicol. – 2007. – V. 83(4). – P. 323–30.
Antunes Dos Santos A., Ferrer B., Marques Gonçalves F., Tsatsakis A.M., Renieri E.A., Skalny A. V., Farina M., Rocha J. T., Aschner M. Oxidative Stress in Methylmercury-Induced Cell Toxicity // Toxics. – 2018. – V. 6(3). – P. 47–50. doi: 10.3390/toxics6030047. 3. Bensaad K., Vousden K.H. p53: new roles in metabolism // Trends Cell Biol. – 2007. – V. 17(6). – P. 286–291.
Brandão F., Cappello T., Raimundo J., Santos M.A., Maisano M., Mauceri A., Pacheco M., Pereira P. Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach: bioaccumulation, metabolomic profiles and oxidative stress // Metallomics. – 2015. – V. 7(9). – P. 1352–1363.
Cariccio V.L., Samа A., Bramanti P., Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases // Biol Trace Elem Res. – 2019. – V. 187(2). – P. 341–356.
Carocci A., Rovito N., Sinicropi M.S., Genchi G. Mercury toxicity and neurodegenerative effects // Rev Environ Contam Toxicol. – 2014. – V. 229. P. 1–18. doi: 10.1007/978-3-319-03777-6_1.
Chang Y., Lee W.Y., Lin Y.J., Hsu Mercury T. (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision // Aquat Toxicol. – 2017. – V. 192. – P. 97–104.
Choi J.H., Lindsey-Boltz L.A., Kemp M., Mason A.C., Wold M.S., Sancar A. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling // Proc Natl Acad Sci U S A. – 2010. – V. 107(31). – P. 13660–13665.
Ciardullo S., Aureli F., Coni E., Guandalini E., Iosi F., Raggi A., Rufo G., Cubadda F. Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth // J Agric Food Chem. – 2008. – V. 56(7). –P. 2442–2451. doi: 10.1021/jf703572t.
Eagles-Smith C.A., Ackerman J.T., Willacker J.J., Tate M.T., Lutz M.A., Fleck J.A., Stewart A.R., Wiener J.G., Evers D.C., Lepak J.M., Davis J.A., Pritz C.F. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada // Sci Total Environ. – 2016. –V.568. P. 1171–1184. doi: 10.1016/j.scitotenv.
Eagles-Smith C.A., Wiener J.G., Eckley C.S., Willacker J.J., Evers D.C., MarvinDiPasquale M., Obrist D., Fleck J.A., Aiken G.R., Lepak J.M., Jackson A.K., Webster J.P., Stewart A.R., Davis J.A., Alpers C.N., Ackerman J.T. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife // Sci Total Environ. – 2016. – V. 568. – P. 1213–1226. doi: 10.1016/j.scitotenv.
Eckerich C., Fackelmayer F.O., Knippers R. Zinc affects the conformation of nucleoprotein filaments formed by replication protein A (RPA) and long natural DNA molecules // Biochim Biophys Acta. – 2001. –V.1538(1). – P. 67–75.
Fuschi P., Carrara M., Voellenkle C., Garcia-Manteiga J. M., Righini P., Maimone B., Sangalli E., Villa F., Specchia C., Picozza M., Nano G., Gaetano C., Spinetti G., Puca A. A., Magenta A., Martelli F. Central role of the p53 pathway in the noncoding-RNA response to oxidative stress // Aging (Albany NY). – 2017. – V. 12(9). – P. 2559–2586.
Giblin F.J., Massaro E.J. The erythrocyte transport and transfer of methylmercury to the tissues of the rainbow trout (Salmo gairdneri) // Toxicology. – 1975. – V. 5. – P. 243–254.
Gуmez-Olivon L.M., Mendoza-Zenil Y.P., SanJuan-Reyes N., Galar-Martнnez M., Ramнrez-Duron N., Rodrнguez Martнn-Doimeadios R.C., Rodrнguez-Fariсas N., IslasFlores H., Elizalde-Velozquez A., Garcнa-Medina S. Geno- and cytotoxicity induced on Cyprinus carpio by aluminum, iron, mercury and mixture thereof // Ecotoxicol Environ Saf. – 2017. – V. 135. – P. 98–105.
Has-Schön E., Bogut I., Vuković R., Galović D., Bogut A., Horvatić J. Distribution and agerelated bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Buљko Blato reservoir (Bosnia and Herzegovina) // Chemosphere. – 2015. – V. 135. – P. 289–296.
Horowitz H.M., Jacob D.J., Amos H.M., Streets D.G., Sunderland E.M. Historical Mercury releases from commercial products: global environmental implications // Environ Sci Technol. – 2014. – V. 48(17). – P. 10242–10250. doi: 10.1021/es501337j.
Hu J., Liu Z.S., Tang S.L., He Y.M. Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX2 tumor in rabbits by intravenous injection // World J Gastroenterol. – 2007. – V. 13(20). – P. 2798–2802.
Hu Z., Holzschuh J., Driever W. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos // PLoS One. – 2015. – V. 10(7). – e0134299. doi: 10.1371 / journal.сдоба.0134299.
Iftode C., Daniely Y., Borowiec J.A. Replication protein A (RPA): the eukaryotic SSB // Crit Rev Biochem Mol Biol. – 1999. – V. 34(3). – P. 141–180.
Ishibashi T., Kimura S., Furukawa T., Hatanaka M., Hashimoto J., Sakaguchi K. Two types of replication protein A 70 kDa subunit in rice, Oryza sativa: molecular cloning, characterization, and cellular & tissue distribution // Gene. – 2001. – V. 272(1–2). – P. 335–343.
Jancsу A., Gyurcsik B., Mesterhozy E., Berkecz R. Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide // J Inorg Biochem. – 2013. – V. 126. – P. 96–103.
Jiang D., Rusling J.F. Oxidation Chemistry of DNA and p53 Tumor Suppressor Gene // Chemistry Open. – 2019. – V. 8(3). – P. 252–265.
Kenšová R., Kružíková K., Havránek J., Haruštiaková D., Svobodová Z. Distribution of mercury in rainbow trout tissues at embryo-larval and juvenile stages // Scientific World Journal. – 2012. V. 20. – P.652–666. doi: 10.1100/2012/652496.
Lieberman H.B., Panigrahi S.K., Hopkins K.M., Wang L., Broustas C.G. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks // Radiat Res. – 2017. – V. 187(4). – P. 424–432.
Liu Q., Basu N., Goetz G., Jiang N., Hutz R. J., Tonellato P.J., Carvan M.J. Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio) // Ecotoxicology. – 2013. – V. 22 (4). – P. 740–751. doi: 10.1007/s10646-013-1066-9.
Lohren H., Bornhorst J., Fitkau R., Pohl G., Galla H.J., Schwerdtle T. Effects on and transfer across the blood-brain barrier in vitro-Comparison of organic and inorganic mercury species // BMC Pharmacol Toxicol. – 2016. – V. 17(1). – P. 63.
Marcel V., Nguyen Van Long F., Diaz J. J. Years of Research Put p53 in Translation // Cancers (Basel). – 2018. – V. 10(5). – P.21.
Mason A.G., Tom S., Simard J.P., Libby R.T., Bammler T.K., Beyer R.P., Morton A.J., Pearson C.E., La Spada A.R. Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age // Hum Mol Genet. – 2014. – V. 23(6). – P. 1606–1618.
Meena R.A., Sathishkumar P., Ameen F., Yusoff A.M., Gu F.L. Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review // Environ Sci Pollut Res Int. – 2017. – V. 25(5). – P. 4134–4148. doi: 10.1007/s11356-017-0966-2.
Mieiro C.L., Pacheco M., Pereira M E., Duarte A.C. Mercury organotropism in feral European sea bass (Dicentrarchus labrax) // Arch Environ Contam Toxicol. – 2011. – V. 61(1). – P. 135–143. doi: 10.1007/s00244-010-9591-5.
Monnet-Tschudi F., Zurich M.G., Honegger P. Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cultures of rat telencephalon // Brain Res. – 1996. – V. 741(1-2). – P. 52–59.
Obrist D., Kirk J.L., Zhang L., Sunderland E.M., Jiskra M., Selin N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use // Ambio. – 2018. – V. 47(2). – P. 116–140. doi: 10.1007/s13280-017-1004-9.
Ohgoh M., Shimizu H., Ogura H., Nishizawa Y. Astroglial trophic support and neuronal cell death: influence of cellular energy level on type of cell death induced by mitochondrial toxin in cultured rat cortical neurons // J Neurochem. – 2000. – V. 75(3). – P. 925–933.
Orihel D.M., Paterson M.J., Blanchfield P.J., Bodaly R.A., Hintelmann H. Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota // Environ Sci Technol. – 2007. – V. 41(14). – P. 4952-4958.
Pereira P., Raimundo J., Arajo O., Canorio J., Almeida A., Pacheco M. Fish eyes and brain as primary targets for mercury accumulation – a new insight on environmental risk assessment // Sci Total Environ. – 2014. – V. 8. – P. 494–495.
Pereira P., Raimundo J., Barata M., Arajo O., Pousгo-Ferreira P., Canorio J., Almeida A., Pacheco M. A new page on the road book of inorganic mercury in fish body - tissue distribution and elimination following waterborne exposure and post-exposure periods // Metallomics. – 2015. – V. 7(3). P. 525–535.
Pereira P., Puga S., Cardoso V., Pinto-Ribeiro F., Raimundo J., Barata M., Pousгo-Ferreira P., Pacheco M., Almeida A. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus) // Aquat Toxicol. – 2016. – V. 170. P. 400–412.
Pillet M., Castaldo G., De Weggheleire S., Bervoets L., Blust R., De Boeck G. Limited oxidative stress in common carp (Cyprinus carpio, L., 1758) exposed to a sublethal tertiary (Cu, Cd and Zn) metal mixture // Comp Biochem Physiol C Toxicol Pharmacol. – 2019. – V. 218. – P. 70–80.
Porter J.R., Fisher B.E., Baranello L., Liu J.C., Kambach D.M., Nie Z., Koh W.S., Luo J., Stommel J.M., Levens D., Batchelor E. Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response // Mol Cell. – 2017. – V. 67(6). – P. 1013–1025.
Rensburg M.J., Rooy M., Bester M.J., Serem J.C., Venter C., Oberholzer H.M. Oxidative and haemostatic effects of copper, manganese and mercury, alone and in combination at physiologically relevant levels: An ex vivo study // Hum Exp Toxicol. – 2019. – V. 38(4). – P. 419–433.
Santovito G., Piccinni E., Boldrin F., Irato P. Comparative study on metal homeostasis and detoxification in two Antarctic teleosts // Comp Biochem Physiol. – 2012. – V. 155. – P. 580–586.
Simmons S.O., Fan C.Y., Yeoman K., Wakefield J., Ramabhadran R. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent // Curr Chem Genomics. – 2011. V. 12(1). P. 5. doi: 10.2174/1875397301105010001.
Simon O., Boudou A. Direct and trophic contamination of the herbivorous carp Ctenopharyngodon idella by inorganic mercury and methylmercury // Ecotoxicol Environ Saf. – 2001. – V. 50(1). – P. 48–59.
Szunyogh D., Gyurcsik B., Larsen F.H., Stachura M., Thulstrup P.W., Hemmingsen L., Jancsу A. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries // Dalton Trans. – 2015. – V. 44(28). – P. 12576–12588.
Tolomeo K. Joint Commission on Hospital Accreditation. More on Managing Hazardous Materials and Waste // J Comm Perspect. – 2016. – V. 36(1). – P. 13–14.
Valavanidis A., Vlahogianni T., Dassenakis M., Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants // Ecotoxicol Environ Saf. – 2006. – V. 64(2). P. 178–189.
Van der Oost R., Beyer J., Vermeulen N. Fish bioaccumulation and biomarkers in environmental risk assessment: a review // Environ Toxicol Pharmacol. – 2003. – V. 13. – P. 149–157.
Vieira L.R., Gravato C., Soares A.M., Morgado F., Guilhermino L. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior // Chemosphere. – 2009. – V. 76(10). – P. 1416–1427. doi: 10.1016/j.
Wang W.X., Wong R.K. Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus // Marine Ecology Progress Series. – 2003. – V. 261. – P. 257–268.
Wold M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism // Annu Rev Biochem. – 1997. – V. 66. – P. 61– 92.
Zheng W., Aschner M., Ghersi-Egea J.F. Brain barrier systems: a new frontier in metal neurotoxicological research // Toxicol Appl Pharmacol. – 2003. – V. 192(1). – P. 1–11.
Zou L., Elledge S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes // Science. – 2003. – V. 5625(6). – P. 1542–1548.