##plugins.themes.bootstrap3.article.main##

Tkachuk A. A., Kladchenko E. S., Andreyeva A. Yu. The role of the adenylate cyclase signaling pathway in the adaptation of the Mediterranean mussel (Mytilus galloprovincialis) hemocytes to hypoosmotic stress. Biodiversity and Sustainable Development, 2024, vol. 8, no. 4 (28), pp. 52-61. https://doi.org/10.21072/eco.2023.28.04

##plugins.themes.bootstrap3.article.details##

Abstract

Osmotic homeostasis is one of the fundamental bases for the survival of hydrobionts living in coastal ecosystems of the world ocean. In bivalves, stress induced by fluctuations in water salinity can induce the secretion of neurotransmitters, including catecholamines. Hemocytes circulating in the hemolymph of bivalves have adrenoreceptors on the cell membrane surface, but the basic knowledge of the effects of catecholamines on hemolymph cell functions as well as their osmoregulatory mechanisms is poorly understood. In the present study, the effects of epinephrine and the soluble adenylate cyclase activator forskolin on the osmotic resistance of hemocytes from the commercial bivalve mollusc Mytilus galloprovincialis were investigated. The effect of these substances on the ability of bivalve hemolymph cells to undergo a regulatory volume reduction in response to hypoosmotic stress was also studied. It was shown in vitro that stimulation of mussel hemocytes with epinephrine (25 μM) and forskolin (20 μM) had no effect on this parameter of osmotic resistance of Mediterranean mussel hemocytes. It was found that forskolin stimulation did not affect the rate and intensity of the regulatory decrease in hemocyte volume in response to hypoosmotic swelling, whereas incubation with epinephrine inhibited the ability of mussel hemolymph cells to restore volume under hypoosmotic conditions. The results of the present work indicate that the adenylate cyclase signaling pathway is involved in the regulation of mussel hemocyte volume restoration in response to hypoosmotic stress.

Authors

A. A. Tkachuk

junior researcher

https://orcid.org/0000-0002-4017-7164

https://www.scopus.com/authid/detail.uri?authorId=58180365500

E. S. Kladchenko

PhD, researcher

https://orcid.org/0000-0001-9476-6573

https://elibrary.ru/author_items.asp?id=1038853

A. Yu. Andreyeva

PhD, leading researcher

https://orcid.org/0000-0001-7845-0165

https://elibrary.ru/author_profile.asp?id=763728

References

Andreyeva A. Yu., Kladchenko E. S., Sudnitsyna J. S., Krivchenko A. I., Mindukshev I. V., Gambaryan S. Protein kinase A activity and NO are involved in the regulation of crucian carp (Carassius carassius) red blood cell osmotic fragility // Fish Physiology and Biochemistry. – 2021. – Vol. 47, iss. 4. – P. 1105–1117. – https://doi.org/10.1007/s10695-021-00971-4

Andreyeva A. Yu., Skverchinskaya E. A., Gambaryan S., Soldatov A. A., Mindukshev I. V. Hypoxia inhibits the regulatory volume decrease in red blood cells of common frog (Rana temporaria) // Comparative Biochemistry and Physiology. Pt. A: Molecular & Integrative Physiology. – 2018. – Vol. 219/220. – P. 44–47. – https://doi.org/10.1016/j.cbpa.2018.02.016

Andreyeva A. Yu., Soldatov A. A., Krivchenko A. I., Mindukshev I. V., Gambaryan S. Hemoglobin deoxygenation and methemoglobinemia prevent regulatory volume decrease in crucian carp (Carassius carassius) red blood cells // Fish physiology and biochemistry. – 2019. – Vol. 45, iss. 6. – P. 1933–1940. – https://doi.org/10.1007/s10695-019-00689-4

Ballina N. R., Maresca F., Cao A., Villalba A. Bivalve haemocyte subpopulations: a review // Frontiers in Immunology. – 2022. – Vol. 13. – Art. 826255. – https://doi.org/10.3389%2Ffimmu.2022.826255

Bregante M., Carpaneto A., Piazza V., Sbrana F., Vassalli M., Faimali M., Gambale F. Osmoregulated chloride currents in hemocytes from Mytilus galloprovincialis // Plos One. – 2016. – Vol. 11, iss. 12. – Art. e0167972. – https://dx.doi.org/10.1371%2Fjournal.pone.0167972

Bussell J. A., Gidman E. A., Causton D. R., Gwynn-Jones D., Malham S. K., Jones M. L. M., Reynolds B., Seed R. Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress // Journal of Experimental Marine Biology and Ecology. – 2008. – Vol. 358, iss. 1. – P. 78–85. – https://doi.org/10.1016/j.jembe.2008.01.018

Carregosa V., Velez C., Soares A. M., Figueira E., Freitas R. Physiological and biochemical responses of three Veneridae clams exposed to salinity changes // Comparative Biochemistry and Physiology Pt. B: Biochemistry and Molecular Biology. – 2014. – Vol. 177/178. – P. 1–9. – https://doi.org/10.1016/j.cbpb.2014.08.001

Coates C. J., Söderhäll K. The stress – immunity axis in shellfish // Journal of Invertebrate Pathology. – 2021. – Vol. 186. – Art. 107492. – https://doi.org/10.1016/j.jip.2020.107492

Demanche R. The osmotic fragility of red blood cells of marine animals: a comparative study : diss. : theses. – [Williamsburg, USA], 1980. – https://dx.doi.org/doi:10.21220/s2-1jmc-wk51

Evans T. G., Kültz D. The cellular stress response in fish exposed to salinity fluctuations // Journal of Experimental Zoology Pt. A: Ecological and Integrative Physiology. – 2020. – Vol. 333, iss. 6. – P. 421–435. – https://doi.org/10.1002/jez.2350

Gagnaire B., Frouin H., Moreau K., Thomas-Guyon H., Renault T. Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg) // Fish & Shellfish Immunology. – 2006. – Vol. 20, iss. 4. – P. 536–547. – https://doi.org/10.1016/j.fsi.2005.07.003

Jauzein C., Donaghy L., Volety A. K. Flow cytometric characterization of hemocytes of the sunray venus clam Macrocallista nimbosa and influence of salinity variation // Fish & Shellfish Immunology. – 2013. – Vol. 35, iss. 3. – P. 716–724. – https://doi.org/10.1016/j.fsi.2013.06.003

Kladchenko E. S., Andreyeva A. Y., Mindukshev I. V., Gambaryan S. Cellular osmoregulation of the ark clam (Anadara kagoshimensis) hemocytes to hyposmotic media // Journal of Experimental Zoology. Pt. A: Ecological and Integrative Physiology. – 2022. – Vol. 337, iss. 5. – P. 434–439. – https://doi.org/10.1002/jez.2578

Kladchenko E. S., Gostyukhina O. L., Soldatov A. A., Rychkova V. N., Andreyeva A. Yu. Functional changes in hemocytes and antioxidant activity in gills of the ark clam Anadara kagoshimensis (Bivalvia: Arcidae) induced by salinity fluctuations // Comparative Biochemistry and Physiology Pt. B: Biochemistry and Molecular Biology. – 2023. – Vol. 264. – Art. 110810. – https://doi.org/10.1016/j.cbpb.2022.110810

Lacoste A., Malham S. K., Cueff A., Poulet S. A. Noradrenaline modulates oyster hemocyte phagocytosis via a β-adrenergic receptor – cAMP signaling pathway // General and Comparative Endocrinology. – 2001. – Vol. 122, iss. 3. – P. 252–259. – https://doi.org/10.1006/gcen.2001.7643

Lange X., Klingbeil K., Burchard H. Inversions of estuarine circulation are frequent in a weakly tidal estuary with variable wind forcing and seaward salinity fluctuations // Journal of Geophysical Research: Oceans. – 2020. – Vol. 125, iss. 9. – Art. e2019JC015789. – https://doi.org/10.1029/2019JC015789

Larsen E. H., Hoffmann E. K. Volume regulation in epithelia // Basic Epithelial Ion Transport Principles and Function / eds: K. L. Hamilton, D. C. Devor. – Second ed. – [Switzerland] : Springer, 2020. – Vol. 1. – P. 395–460. – https://doi.org/10.1007/978-3-030-52780-8_11

Maar M., Saurel C., Landes A., Dolmer P., Petersen J. K. Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a Dynamic Energy Budget model // Journal of Marine Systems. – 2015. – Vol. 148. – P. 48–55. – https://doi.org/10.1016/j.jmarsys.2015.02.003

Makhro A., Huisjes R., Verhagen L. P., Del Mar Maňu-Pereira M., Llaudet-Planas E., Petkova-Kirova P., Wang J., Eichler H., Bogdanova A., Van Wijk R., Vives-Corrons J.-L., Kaestner L. Red cell properties after different modes of blood transportation // Frontiers in Physiology. – 2016. – Vol. 7. – P. 288. – https://doi.org/10.3389/fphys.2016.00288

Medeiros I. P. M., Faria S. C., Souza M. M. Osmoionic homeostasis in bivalve mollusks from different osmotic niches: physiological patterns and evolutionary perspectives // Comparative Biochemistry and Physiology. Pt. A: Molecular & Integrative Physiology. – 2020. – Vol. 240. – Art. 110582. – https://doi.org/10.1016/j.cbpa.2019.110582

Muravyov A. V., Koshelev V. B., Fadukova O. E., Tikhomirova I. A., Maimistova A. A., Bulaeva S. V. The role of red blood cell adenylyl cyclase activation in changes of erythrocyte membrane microrheological properties // Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. – 2011. – Vol. 5, iss. 2. – P. 128–134. – https://doi.org/10.1134/S1990747811020036

Naceur C. B., Maxime V., Mansour H. B., Le Tilly V., Sire O. Oyster’s cells regulatory volume decrease: a new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters // Ecotoxicology and Environmental Safety. – 2016. – Vol. 133. – P. 327–333. – https://doi.org/10.1016/j.ecoenv.2016.07.030

Pankhurst N. W. The endocrinology of stress in fish: an environmental perspective // General and Comparative Endocrinology. – 2011. – Vol. 170, iss. 2. – P. 265–275. – https://doi.org/10.1016/j.ygcen.2010.07.017

Pérez-Velasco R., Manzano-Sarabia M., Hurtado-Oliva M. Á. Effect of hypo- and hypersaline stress conditions on physiological, metabolic, and immune responses in the oyster Crassostrea corteziensis (Bivalvia: Ostreidae) // Fish & Shellfish Immunology. – 2022. – Vol. 120. – P. 252–260. – https://doi.org/10.1016/j.fsi.2021.11.033

Pourmozaffar S., Tamadoni Jahromi S., Rameshi H., Sadeghi A., Bagheri T., Behzadi S., Gozari M., Reza Zahedi M., Abrari Lazarjani S. The role of salinity in physiological responses of bivalves // Reviews in Aquaculture. – 2020. – Vol. 12, iss. 3. – P. 1548–1566. – https://doi.org/10.1111/raq.12397

Pretini V., Koenen M. H., Kaestner L., Fens M. H. A. N., Schiffelers R. M., Bartels M., Van Wijk R. Red blood cells: chasing interactions // Frontiers in Physiology. – 2019. – Vol. 10. – P. 945. – https://doi.org/10.3389/fphys.2019.00945

Tan K., Fu W., Zhang H., Ma H., Li S., Zheng H. Intraspecific hybridization as a mitigation strategy of low salinity in marine bivalve noble scallop Chlamys nobilis // Aquaculture. – 2022. – Vol. 552. – Art. 738037. – https://doi.org/10.1016/j.aquaculture.2022.738037

Tian L., Tan P., Yang L., Zhu W., Xu D. Effects of salinity on the growth, plasma ion concentrations, osmoregulation, non-specific immunity, and intestinal microbiota of the yellow drum (Nibea albiflora) // Aquaculture. – 2020. – Vol. 528. – Art. 735470. – https://doi.org/10.1016/j.aquaculture.2020.735470

Torre A., Trischitta F., Corsaro C., Mallamace D., Faggio C. Digestive cells from Mytilus galloprovincialis showapartialregulatoryvolumedecreasefollowingacutehypotonicstressthrough mechanisms involving inorganic ions // Cell Biochemistry and Function. – 2013. – Vol. 31, iss. 6. – P. 489–495. – https://doi.org/10.1002/cbf.2925

Tuvia S., Moses A., Gulayev N., Levin S., Korenstein R. β‐Adrenergic agonists regulate cell membrane fluctuations of human erythrocytes // The Journal of Physiology. – 1999. – Vol. 516, iss. 3. – P. 781–792. – https://doi.org/10.1111/j.1469-7793.1999.0781u.x

Velez C., Figueira E., Soares A. M. V. M., Freitas R. Combined effects of seawater acidification and salinity changes in Ruditapes philippinarum // Aquatic Toxicology. – 2016. – Vol. 176. – P. 141–150. – https://doi.org/10.1016/j.aquatox.2016.04.016

Wei H., Chen M., Deng Z., Zhao W., Li Y., Fang W., Ma Z., Wang Yu, Yu G. Immune and antioxidant responsesofpearloyster Pinctada maxima exposedtoacutesalinitystress//AquacultureResearch.– 2022. – Vol. 53, iss. 6. – P. 2439–2447. – https://doi.org/10.1111/are.15761

Wu F., Falfushynska H., Dellwig O., Piontkivska H., Sokolova I. M. Interactive effects of salinity variation and exposure to ZnO nanoparticles on the innate immune system of a sentinel marine bivalve, Mytilus edulis // Science of the Total Environment. – 2020. – Vol. 712. – Art. 136473. – https://doi.org/10.1016/j.scitotenv.2019.136473

Funding

Работа выполнена в рамках гранта РНФ № 22-26-00165 «Функциональный и иммунный статус двустворчатых моллюсков — объектов марикультуры в условиях действия факторов глобальных изменений климата» и частично в рамках государственного задания №1023033000140-3-1.6.16 (FNNZ-2024-0035) «Механизмы функционирования иммунной системы двустворчатых моллюсков и физиологические основы её адаптации к абиотическим, биотическим и антропогенным факторам окружающей среды».

Statistics