##plugins.themes.bootstrap3.article.main##

Korotkov A. A. Comparative Assessment of Doses Formed by Naturally Occuring Radionuclide 210 Po in Filter-Feeding Hydrobionts from Salt Lakes of the Crimea and Coastal Areas of the Black Sea. Proceedings of the T.I.Vyazemsky Karadag Scientific Station - Nature Reserve of the Russian Academy of Sciences, 2020, no. 2 (14), pp. 3-13. https://doi.org/10.21072/eco.2021.14.01

##plugins.themes.bootstrap3.article.details##

Abstract

This paper presents the results of the comparative assessment of absorbed and equivalent dose rates generated by naturally occurring radionuclide 210Po in hydrobionts with a similar feeding type (filterfeeding organisms). The objects were some species of the bivalve mollusks from Black Sea and the typical inhabitant of the salt lakes of the Crimea, the gill-legged crustacean Artemia spp. High ability of the studied hydrobionts to accumulate polonium was noted. The values of the 210Po concentration ratio ranged from 104 to 105. Comparison of equivalent doses received by these organisms (as result of internal irradiation with α-particles produced by 210Po) showed that values of the dose rates were quite close. The maximum equivalent dose rates calculated for both artemias and molluscs were about 10-1 Sv·year-1. Evaluation of obtained results using proposed by G. G. Polikarpov “Scale of chronic irradiation zones” showed that the doses formed by 210Po reach the “ecological masking” zone, which confirms the radiological importance of 210Po as the main contributor to the total dose.

Authors

A. A. Korotkov

junior researcher

References

Балушкина Е.В., Голубков С.М., Голубков М.С. и др. Влияние абиотических и биотических факторов на структурно-функциональную организацию экосистем солёных озёр Крыма // Журн. общ. биологии. 2009. Т. 70, № 6. С. 504–514.

Киселева М.И. Бентос рыхлых грунтов Черного моря. – Киев: Наукова думка, 1981. 165 с.

Лазоренко Г.Е. Распределение природного радионуклида 210Ро в компонентах экосистемы Черного моря // Радиоэкологический отклик Черного моря на Чернобыльскую аварию / Под ред.: Г.Г. Поликарпова и В.Н. Егорова. Севастополь: ЭКОСИ–Гидрофизика, 2008. С. 311–337.

Лазоренко Г.Е. Поликарпов Г.Г. Полоний-210 в рыбах Черного моря // Радиационная биология. Радиоэкология. 2010. Т. 50, № 4. C. 398–404.

Леонова Г.А., Богуш А.А., Бобров В.А. Биоиндикация оценка состояния соляных озер Кулунды (Алтайский, край) по биогеохимическим критериям // Съезд Гидробиологического общества РАН (г. Тольятти, Россия, 18-22 сентября 2006 г.). 2006. Т. 1. С. 44–46.

Методические рекомендации по санитарному контролю за содержанием радиоактивных веществ в объектах внешней среды / ред.: А.Н. Марей, А.С. Зыкова. – М.: МЗ СССР, 1980. 356 с.

Мирзоева Н.Ю., Коротков А.А., Лазоренко Г.Е. Современные дозовые нагрузки от излучений техногенного 137Cs и природных радионуклидов на жаброного рачка Artemia spp. из соленых озер Крыма // Радиационная биология. Радиоэкология. 2019. Т. 59, № 4. С. 419–429.

Поликарпов Г.Г., Егоров В.Н., Гулин С.Б., Стокозов Н.А., Лазоренко Г.Е., Мирзоева Н.Ю., Терещенко Н.Н., Цыцугина В.Г., Кулебакина Л.Г., Поповичев В.Н., Коротков А.А., Евтушенко Д.Б., Жерко Н.В., Малахова Л.В. // Радиоэкологический отклик Чёрного моря на чернобыльскую аварию / Под ред. Г.Г. Поликарпова и В.Н. Егорова. Севастополь: ЭКОСИ–Гидрофизика, 2008. С. 351–358.

Студеникина Т.Л. Особенности биологии рачка Artemia salina в условиях соленых озер // Водоемы Алтайского края. – Новосибирск, 1999. С. 112–122.

Терещенко Н.Н., Поликарпов Г.Г. Современные дозовые нагрузки для черноморских гидробионтов от 239,240Pu после аварии на Чернобыльской АЭС // Радиоэкологический отклик Черного моря на Чернобыльскую аварию / Под ред.: Г.Г. Поликарпова и В.Н. Егорова. – Севастополь: ЭКОСИ–Гидрофизика, 2008. С. 371 – 376.

Aarkrog A., Baxter M.S., Battercourt A.O., Bojanowski R., Bologa A., Charmasson S., Cunha I., Delfanti R., Duran E., Holm E., Jeffree R., Livingston H.D., Mahapanayawong S., Nies H., Osvath I., Pingyi Li., Povinec P.P., Sanchez A., Smith J.N., Swift D. A comparison of doses from 137Cs and 210Po in marine food: A major international study //Journal of Environmental Radioactivity.1997.Vol. 34. N 1.P. 69–90.

Aposhian H.V., Bruce D.C. Binding of polonium-210 to liver metallothionein // Rad. Res. 1991. Vol. 126. P. 379–382.

Balushkina E.V., Golubkov S.M., Golubkov M.S. et al. Characteristic features of ecosystems of hyperhaline lakes of the Crimea // Proc. Zoological Institute of Russian Academy of Sciences. 2005. Vol. 308. Р. 5–13.

Baxter M.S. Technologically enhanced radioactivity: an overview // Journal of Environmental Radioactivity. 1996. Vol. 32.N 1–2. P. 3–17.

Blaylock B.G., Frank M.I., O’Neal B.R. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment // Report ES/ER/TM–78: Prepared for the U.S. DOE, Contract DE-AC05-84OR21400. Oak Ridge, TN, USA: Oak Ridge National Laboratory. 1993. 40 p.

Chen Q., Dahlgaard H., Nielsen S.P., AarkrogA. Determination of 210Po and 210Pb in mussel, fish, sediment, petroleum //RISØ National Laboratory (Roskilde, Denmark). Nov. 1998. 10p.

Cherry R.D., Heyraud M. Lead-210 and polonium-210 in the World’s oceans. // IAEATECDOC-481: Inventories of selected radionuclides in the oceans. Vienna: IAEA. 1988.P. 139–158.

Cherry R.D., Shannon L.V. The alpha radioactivity of marine organisms //Atomic Energy Review. 1974.Vol. 12. P. 3–45.

Durand J.P., Goudard F. Ferritin and hemocyanin: 210Po molecular traps in marine fish, oyster and lobster // Marine Ecology Progress Series. 2002. Vol. 233.Is. 4. P. 199–205.

Egorov V.N., Lazorenko G.E., MirzoevaN.Yu., Stokozov N.A., Kostova S.K., Malakhova L.V., Pirkova A.V., Arkhipova S.N., Korkishko N.F., Popovichev V.N., Plotitsyna O.V., Migal L.V. Content137Cs, 40K, 90Sr, 210Po radionuclides and some chemical pollutants in the Black Sea mussels Mytilus galloprovincialis // Морской экологический журнал. 2006. Т. 5. № 3. С. 70–78.

EPA (Environmental Protection Agency, USA) Radiochemistry Procedures Manual // Eastern Environmental Radiation Facility. EPA 520/5–96–006. P.00.03.01–03. 1984. 342 p.

Friedrich J., Rutgers van der Loeff M.M. A two tracer (210Po-234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current // Deep Sea Research. 2002. Part I. Vol. 49.P. 339–354.

Heyraud M., Cherry R.D. Polonium-210 and lead-210 in marine food chains // Marine Biology.1979. Vol. 52.N3. P. 227–236.

ICRP. Dose coefficients for nonhuman biota environmentally exposed to radiation // ICRP Publication 136. Ann. ICRP 46(2). 2017. 92 p.

Kryshev I., Sazykina T., Kryshev A. et al. Ecological dosimetry models // Radionuclides uptake and transfer in pelagic food chains of the Barents Sea and resulting doses to man and biota. Project of NRPA, IMR, AUN, IET (Norway) and SPA TYPHООN (Russia). Norway: NRPA, 2002. 97 р.

Lazorenko G.E., Polikarpov G.G. 210Ро in marine biota // Regional Technical Co-operation Project RER/2/003 "Marine Еnvironmental Аssessment of the Black Sea": Working Material. Reproduced by the IAEA. Vienna: IAEA, 2004.P. 168–173.

Lazorenko G.E., Polikarpov G.G., Osvath I. 210Ро accumulation by components of the Black Sea ecosystem // Radioprotection. 2009. Vol. 44. N5. P. 981–986.

Lazorenko G.E., Polikarpov G.G., Pirkova A.V., Osvath I. Naturally occuring radionuclide Po-210 in the Black Sea molluscs // Морской экологический журнал. 2010. Т. 9, №3. С. 43–48.

Mayer K. Basics and essentials of statistics. // IAEA Regional advanced training course on quality management in environmental applications of nuclear analytical techniques (Karlsruhe (Germany), (23 Aug.–3 Sept. 1999) European Commission, Joint Research Centre, Institute for Transuranium Elements. Karlsruhe: Center for Advanced Technological and Environmental Training (FTU), 1999. 320 p.

Polikarpov G.G. Conceptual model of responses of organisms, populations and ecosystems to all possible dose rates of ionizing radiation in the environment // Radiat. Prot. Dosim. 1998. Vol. 75. N 1–4. P. 181–185.

Radiation protection and the management radiation protection of radioactive waste in the oil and gas industry // IAEA Safety Reports Series, no. 34, Vienna: IAEA, 2003. 139 p.

Rutgers van der Loeff M.M., Geiber W. U- and Th-series nuclides as tracers of particle dynamics, scavenging and biogeochemical cycles in the oceans. U-Th series nuclides in aquatic systems/ S. Krishnaswami, J.K. Cochran (Eds.).Chapter 7, Amsterdam: Elsevier, 2008. P. 227–268.

Sources of radioactivity in the marine environment and their relative contributions to overall dose assessment from marine radioactivity (MARDOS) // Technical Document 838. Vienna: IAEA, 1995.

The environmental behaviour of polonium // Technical Report Series, no. 484. Vienna: IAEA, 2017. 255 p.

Thomas P., Liber K. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine // J. Environ. International. 2001. Vol. 27. P. 341–353.

Wildgust M.A., McDonald P., White K.N. Temporal сhanges of 210Po in temporal coastal waters // The Science of Total Environment. 1998.Vol. 214. Iss. 1/4. P. 1–10.

Wildgust M.A., McDonald P., White K.N. Assimilation of 210Po by mussel Mytilus edulis from the alga Isochrisis galbana // Marine Biology. 2000. Vol. 136. P. 49–53.

Funding

Работа выполнена частично по теме государственного задания рег. No НИОКТР АААА-А18-118020890090-2 «Молисмологические и биогеохимические основы гомеостаза морских экосистем» (внутр. No 0828-2018-0006). Работы по определению 210Ро в соленых озерах Крыма и артемии проводились при финансовой поддержке Гранта РНФ No 18-16-00001 «Разработка биологических и геохимических основ развития аквакультуры в гиперсоленых озерах и лагунах Крыма»

Statistics

Downloads

Download data is not yet available.