Фенологическая реакция Quercus pubescens Willd. на климатические изменения в условиях сухих субтропиков
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Аннотация
Протестированы три фенологические модели для прогнозирования сроков развертывания листьев, начала цветения и оценки возможных сдвигов весеннего развития Quercus pubescens Willd. в связи с изменением климата. Модель (М1) основана на методе накопления только тепловых единиц (F). Комбинированные модели (M2 и M3) – на последовательном накоплении охлаждающих и тепловых единиц (CF), причем модифицированная модель М3 также учитывает влияние фотопериода на растение. На основе данных наблюдений оптимизированы дата начала накопления тепловых единиц после завершения периода покоя, их необходимая сумма для начала фенофаз и пороговая температура. Начальной датой для накопления единиц охлаждения было выбрано 1 ноября. Для параметризации моделей использованы фенологические наблюдения и суточные данные температуры воздуха за период с 1936 по 2017 гг. Тестирование показало высокую степень адекватности при прогнозировании дат развертывания листьев и начала цветения Q. pubescens модели М3, учитывающей влияние фотопериода. Простая тепловая модель и последовательные модели накопления охлаждающих и тепловых единиц совместно с метеорологическими прогнозами, основанными на трех сценариях изменения климата проекта CMIP5 (RCP2.6, RCP4.5 и RCP8.5) были использованы для оценки сроков развертывания листьев и начала цветения Q. pubescens в течение 21-го столетия. Расчеты показали, что при развитии сценария RCP8.5 потепление может оказать значительное воздействие на выход почек из органического покоя, и как следствие – на сроки весеннего развития.
Авторы
Библиографические ссылки
Анисимов О.А., Кокорев В.А. Об оптимальном выборе гидродинамических моделей для оценки влияния изменений климата на криосферу // Лед и Снег. – 2013. – Том. 121. – № 1. – С. 83–92.
Гаркуша Л. Я., Багрова Л. А., Позаченюк Е. А. Разнообразие ландшафтов Крыма со средиземноморскими элементами флоры // Ученые записки Таврического национального университета им. В.И. Вернадского Серия "География". – Том 25 (64). – 2012 г. – №2. – С.36–47.
Гордеев А.В., Клещенко А.Д., Черняков Б.А., Сиротенко О.Д. Биоклиматический потенциал России: теория и практика. – М.: Товарищество научных изданий КМК, 2006. – 512 с.
Жмылева А.П., Карпухина Е.А., Жмылев П.Ю. Фенологическая реакция лесных растений на потепление климата: рано- и поздноцветущие виды // Вестник РУДН, серия Экология и безопасность жизнедеятельности. – 2011. – № 2. – С. 5–15.
ИКАРДА. Загрузка прогностических метеорологических данных с сайтов Earth System Grid Federation (ESGF) // ИКАРДА (Международный центр по сельскохозяйственным исследованиям в засушливых зонах). – 2015. – 24 с. [Электронный ресурс] Режим доступа: http://cac-
program.org/files/Manual_on_CC_data_downloading_and_processing_ru.pdf (дата обращения: 10.07.2018).
Карпухина Е.А., Жмылёв П.Ю., Жмылёва А.П. Зимний покой и весеннее распускание почек лесных растений // Вестник РУДН. Серия «Экология и безопасность жизнедеятельности». – 2007. – № 1. – С. 5–11.
Корсакова С.П., Корсаков П.Б. Динамика временных границ климатических сезонов на Южном берегу Крыма в условиях изменения климата // Бюллетень ГНБС. – 2018. - № 127. – С. 107–115. DOI: 10.25684/NBG.boolt.127.2018.15
Наставление гидрометеорологическим станциям и постам. Вып. 11. Агрометеорологические наблюдения на станциях и постах. Ч. 1. Основные агрометеорологические наблюдения. – Л.: Гидрометеоиздат, – 1985. – 316 с.
Официальный сайт ФГБУ «Главная геофизическая обсерватория им. А.И. Воейкова». Раздел «Изменения климата в России в 21 веке (модели CMIP 5)». [Электронный ресурс]. Режим доступа: http://voeikovmgo.ru/ru/izmenenie-klimata-vrossii-v-xxi-veke?id=613. (дата обращения: 10.07.2018).
Плугатарь Ю.В., Корсакова С.П., Ильницкий О.А. Экологический мониторинг Южного берега Крыма. – Симферополь : ИТ «АРИАЛ», 2015. – 164 с.
Судакевич Ю.Е. Влияние климатических условий на зимнее развитие плодовых культур // Труды ГНБС, 1962. – Том. XXXVI. – С. 47–64.
Basler D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe // Agricultural and Forest Meteorology. – 2016. – Vol. 217, – P. 10–21.
Blümel K., Chmielewski, F.M. Shortcomings of classical phenological forcing models and a way to overcome them // Agricultural and Forest Meteorology. – 2012. – Vol. 164. – P. 10–19. DOI: 10.1016/j.agrformet.2012.05.001
Caffarra A.,Donnelly A.The ecological significance of phenology in four different tree species: eff ects of light and temperature on bud burst // International Journal of Biometeorology. – 2011. – Vol. 55. – Issue. 5. – P. 711–721.
Cannell M.G.R., Smith R.I. Thermal Time, Chill Days and Prediction of Budburst in Picea sitchensis // Journal of Applied Ecology. 1983. – Vol. 20(3). – P. 951–963. http://www.jstor.org/stable/2403139
Chen X., Wanga L., Inouye D. Delayed response of spring phenology to global warming in subtropics and tropics // Agricultural and Forest Meteorology. – 2017. – Vol. 234. – P. 222–235.
Chuine I. A unifed model for budburst of trees // Journal of Theoretical Biology. – 2000. – Vol. 207. – P. 337–347. https://doi.org/10.1006/jtbi.2000.2178 Pub Med
Chuine I., Bonhomme M., Legave J.M., Garciade Cortazar A., Charrier G., Lacointe A., Améglio T. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break //. Global Change Biology. – 2016. – Vol. 22. – P. 3444–3460.
Chuine I., Kramer K. Hänninen H. Plant development models. In: Phenology: an integrative environmental science. – 2003. – 1st edn. Ed. M.D. Schwartz (Kluwer Press: Milwaukee, WI). – P. 217–235. DOI: 10.1007/978-94-007-0632-3_14
Chuine I., Morin X., Bugmann H.Warming, photoperiods, and tree phenology // Science. – 2010. – Vol. 329. – P. 277–278.
Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Alonso-Balmaseda M., Balsamo G., Bauer P., Bechtold P., Beljaars A., van de Berg L., Bidlot J-R., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S., Hersbach H., Hólm E.V., Isaksen L., Kållberg P.W., Köhler M., Matricardi M., McNally A., Monge-Sanz B.M., Morcrette J-J., Peubey C., de Rosnay P., Tavolato C., Thépaut J-N., Vitart F.The ERA-Interim reanalysis: configuration and performance of the data assimilation system // Quarterly Journal of the Royal Meteorological Society. – 2011. – Vol. 137. – №. 656. – P. 553–597.
Delzon S., Urli M., Samalens J.C., Lamy J.B., Lischke H., Sin F., Zimmermann N.E., Porte A.J. Field evidence of colonisation by Holm Oak, at the Northern Margin of its distribution range, during the anthropocene period // PLoS ONE. – 2013. Nov 18;8(11):e80443. doi: 10.1371/journal.pone.0080443. eCollection 2013.
H¨anninen H. Modelling bud dormancy release in trees from cool and temperate regions // Acta Forestalia Fennica. – 1990. – Vol. 213. – P. 1–47. http://hdl.handle.net/1975/9315
Herms D. A. Using degree-days and plant phenology to predict pest activity. In: Krischik, V., Davidson, J., eds. IPM (Integrated Pest Management) of Midwest Landscapes // Minnesota Agricultural Experiment Station Publication. – 2004. – Vol. 58-07645. – P. 49–59.
Hijmans R. ., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas // International Journal of Climatology. – 2005. – Vol. – 25(15). P. 1965–1978. Режим доступа: http://www.worldclim.org/version1
IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. – 2013, Cambridge, UK: Cambridge University Press. – 1535 p.
Körner C., Basler D. Phenology under global warming // Science. – 2010. – Vol. 327. – P. 1461–1462.
Ladányi M., Persely S., Nyéki J., Szabó Z. From phenology models to risk indicator analysis // Agricultural Informatics. – 2010. – Vol. 1(2). – P. 8–16.
Laube J., Sparks T.H., Estrella N., Höfler J., Ankerst D.P., Menzel A. Chilling outweighs photoperiod in preventing precocious spring development // Global Change Biology. – 2014. – Vol. 20. – P. 170–182.
Linkosalo T.,Hakkinen R., Hanninen H. Models of the spring phenology of boreal and temperate trees: is there something missing? // Tree Physiology. – 2006. – Vol. – 26. – P. 1165–1172.
Malyshev A.V., Henry H.A.L., Bolte A., Khan M.A.S.A., Kreyling J. Temporal photoperiod sensitivity and forcing requirements for budburst in temperate tree seedlings // Agricultural and Forest Meteorology. – 2018. – Vol. – 218. – P. 82–90
Masui T., Matsumoto K., Hijioka I. et al. An emission pathway for stabilization at 6 Wm−2 radiative forcing // Climatic Change. – 2011. – Vol. – 109, № 1–2. – P. 59–76.
Mouradov A., Cremer F., Coupland G. Control of flowering time: interacting pathways as a basis for diversity // Plant Cell. – 2002. – Vol. 14 (Suppl). – P. 111–130.
Murray M., Cannell G. Smith R. Date of budburst of fifteen tree species in britain following climatic warming // Journal of Applied Ecology. – 1989. – Vol. 26. – P. 693– 700. http://www.jstor.org/stable/2404093
Piao S., Ciais P., Friedlingstein P., Peylin P., Reichstein M., Luyssaert S., Margolis H., Fang J., Barr A., Chen A., Grelle A., Hollinger D.Y., Laurila T., Lindroth A., Richardson A.D., Vesala T. Net carbon dioxide losses of northern ecosystems in response to autumn warming // Nature. – 2008. – Vol. 451. – P. 49–52.
Primack R.B., Ibáñez I., Higuchi H., Lee S.D., Miller-Rushing A.J., Wilson A.M., Silander J.A. Spatial and interspecific variability in phenological responses to warming temperatures // Biological Conservation. – 2009. – Vol. 142. – P. 2569-2577. DOI: 10.1016/j.biocon.2009.06.003
Ramirez J., Jarvis A. High resolution statistically downscaled future climate surfaces. International Center for Tropical Agriculture (CIAT); CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). 2008. [Электронный ресурс]. Режим доступа: http://ccafs-climate.org/data/ (дата обращения: 7.02.2018, 4.07.2018).
Ramirez Villejas, J., Jarvis A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1. – International Center for Tropical Agriculture (CIAT). Cali. CO, 2010. – 18 p.
Riahi K., Rao S., Krey V., et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions // Climatic Change. – 2011 – Vol. 109. – Iss. 1–2. – P. 33–57.
Ruml M., Vulić T., Importance of phenological observations and predictions in agriculture // Journal of Agricultural Sciences. – 2005. – Vol. 50, № 2. – P. 217–225. DOI: 10.2298/JAS0502217R
Sanchez-Azofeifa A., Kalacska M.E., Quesada M., Stoner K.E., Lobo J.A., Arroyo-Mora P. Tropical dry climates / In: Schwartz, M.D. (Ed.), Phenology: An Integrative Environmental Science. Springer Netherlands, Dordrecht, 2013. – P. 157–171.
Sarvas R. Investigations on the annual cycle of development of forest trees. Autumn dormancy and winter dormancy // Communicationes Instituti Forestalis Fenniae. – 1974. – Vol. 84. – P. 1–101.
Savolainen O., Pyhajarvi T., Knurr T. Gene flow and local adaptation in trees // Annual Review of Ecology Evolution and Systematics. – 2007. – Vol. 38. – P. 595–619.
Siljamo P., Sofiev M., Ranta H., Linkosalo T., Kubin E., Ahas R., Genikhovich E., Jatczak K., Jato V., Nekovář J., Minin A., Severova E., Shalaboda V. Representativeness of pointwise phenological Betula data collected in different parts of Europe // Global Ecology and Biogeography. – 2008. – Vol. 17. – P. 489–502. DOI:10.1111/j.1466-8238.2008.00383.x
Thomson A.M., Calvin K.V., Smith S.J. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100 // Climatic Change. – 2011. – Vol. – 109. – P. 77–94.
van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J-F., Masui T., Meinshausen M., Nakicenovic N., Smith S.J., Rose S.K. The representative concentration pathways: an overview // Climatic Change. – 2011. – Vol. – 109. – P. 5. https://doi.org/10.1007/s10584-011-0148-z
Vitasse Y., Basler D. What role for photoperiod in the bud burst phenology of European beech // Europe Journal Forest Recourses. – 2013. – Vol. 132. – P. 1–8. DOI 10.1007/s10342-012-0661-2
Vitasse Y., Francois C., Delpierre N., Dufrene E., Kremer A., Chuine I., Delzon S., Assessing the eff ects of climate change on the phenology of European temperate trees // Agricultural and Forest Meteorology. – 2011. – Vol. 151. – P. 969–980.
Winston W.L., Albright S.CH. Practical Management Science, 6E, geared entirely to Excel 2016 (Cengage Learning), 2018. – 50 p.
Zohner C.,RennerS. Perception of photoperiod in individual buds of mature trees regulates leaf-out // New Phytologist. – 2015. – Vol. 208 (4). – P. 1023–1030.