Поле содержания окрашенного растворённого органического вещества и его связь с солёностью в распреснённых прибрежных водах Азовского моря
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Аннотация
На основе материалов серии экспедиций, проведённых Морским гидрофизическим институтом (г. Севастополь) и Южным научно-исследовательским институтом морского рыбного хозяйства и океанографии (г. Керчь) в 2002–2015 гг., получено уравнение регрессии, свидетельствующее о наличии тесной обратной корреляционной связи между солёностью и концентрацией окрашенного растворённого органического вещества в прибрежных водах северной части Азовского моря. При помощи этого уравнения по схемам средней месячной солёности рассчитаны сезонные поля содержания исследуемого вещества для всей прибрежной акватории моря, которая испытывает влияние речного стока. Показано, что у подверженных распреснению северного и восточного берегов моря поле исследуемой величины содержит существенную терригенную составляющую, которая значительно трансформируется на стоковых фронтах впадающих в Азовское море рек. Мористее фронтов в центральной, западной и южной областях Азовского моря поле окрашенного растворённого органического вещества однородно.
Авторы
Библиографические ссылки
Агатова А. И., Лапина Н. М., Торгунова Н. И. Особенности распределения органического вещества в водах Чёрного моря // Система Чёрного моря / Ин-т океанологии им. П. П. Ширшова РАН ; отв. ред. А. П. Лисицын. – Москва : Науч. мир, 2018. – С. 146–170. – https://doi.org/10.29006/978-5-91522-473-4.2018.146
Айлер Р. Химия кремнезёма: растворимость, полимеризация, коллоидные и поверхностные свойства, биохимия. Ч. 1. – Москва : Мир, 1982. – С. 113.
Гидрометеорологические условия морей Украины. Т. 1. Азовское море / Ю. П. Ильин [и др.]. – Севастополь : [б. и.], 2009. – 400 с.
Комплекс гидробиофизический мультипараметрический погружной автономный «КОНДОР» // Hydrooptics Ltd. Development creation research : [каталог оборудования] / Ecodevice. – [Sevastopol], cop. 2021. – URL: http://ecodevice.com.ru/ecodevice-catalogue/multiturbidimeterkondor (дата обращения: 26.10.2020).
Пугач С. П., Пипко И. И. Динамика растворённого окрашенного органического вещества на шельфе Восточно-Cибирского моря // Доклады академии наук. – 2012. – Т. 447, № 6. – С. 671–674.
Chaichitehrani N. Investigation of colored dissolved organic matter and dissolved organic carbon using combination of ocean color data and numerical model in the Northern Gulf of Mexico : master’s theses / Louisiana State University, LSU Digital Commons. – 2012. – URL: https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=1248&context=gradschool_theses (дата обращения: 26.10.2020).
Climatic atlas of the Sea of Azov / Eds.: G. Matishov, S. Levitus. – Washington : U. S. Government Printing Office, 2006. – 103 pp. – URL: https://www.nodc.noaa.gov/OC5/AZOV2006/start.html (дата обращения: 26.01.2021).
Donázar-Aramendía I., Sánchez-Moyano J. E., García-Asencio I., Miró J. M., Megina C., GarcíaGómez J. C. Impact of dredged-material disposal on soft-bottom communities in a recurrent marine dumping area near to Guadalquivir estuary, Spain // Marine Environmental Research. – 2018. – Vol. 139. – P. 64–78. – https://doi.org/10.1016/j.marenvres.2018.05.010
Hopkins J., Lucas M., Dufau C., Sutton M., Stum J., Lauret O., Channelliere C. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean color and sea level // Remote Sensing of Environment. – 2013. – Vol. 139. – P. 365–385. – https://doi.org/10.1016/j.rse.2013.08.015
Kaiser D., Konovalov S., Schulz-Bull D. E., Waniek J. J. Organic matter along longitudinal and vertical gradients in the Black Sea // Deep Sea Research. Part I : Oceanographic Research Papers. – 2017. – Vol. 129. – P. 22–31. – https://doi.org/10.1016/j.dsr.2017.09.006
Kari E., Merkouriadi I., Walve J., Leppäranta M., Kratzer S. Development of underice stratification in Himmerfjärden bay, North-Western Baltic proper, and their effect on the phytoplankton spring bloom // Journal of Marine Systems. – 2018. – Vol. 186. – P. 85–95. – https://doi.org/10.1016/j.jmarsys.2018.06.004
Sasaki H., Gomi Y., Asai T., Shibata M., Kiyomoto Y., Okamura K., Morinaga K., Nishiuchi K., Hasegawa T., Yamada H. Ocean color satellite-derived salinity using colored dissolved organic matter(CDOM) in river-influenced region // Journal of the Japan Society for Marine Surveys and Technology. – 2013. – Vol. 25, iss. 2. – P. 2_13-2_18. – https://doi.org/10.11306/jsmst.25.2_13
Shanmugam P., Varunan T., Jaiganesh S. N. N., Sahay A., Chauhan P. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems // Estuarine, Coastal and Shelf Science. – 2016. – Vol. 175. – P. 126–145. – https://doi.org/10.1016/j.ecss.2016.03.020
Simonini R., Ansaloni I., Cavallini F., Graziosi F., Iotti M., N’Siala G. M., Mauri M., Montanari G., Preti M., Prevedelli D. Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (Northern Adriatic Sea, Italy) // Marine Pollution Bulletin. – 2005. – Vol. 50, iss. 12. – P. 1595–1605. – https://doi.org/10.1016/j.marpolbul.2005.06.031
Stronkhorst J., Ariese F., Van Hattum B., Postma J. F., de Kluijver M., Den Besten P. J., Bergman M. J. N., Daan R., Murk A. J., Vethaak A. D. Environmental impact and recovery at two dumping sites for dredged material in the North Sea // Environmental Pollution. – 2003. – Vol. 124, iss. 1. – P. 17–31. – https://doi.org/10.1016/S0269-7491(02)00430-X
Van der Wal D., Forster R. M., Rossi F., Hummel H., Ysebaert T., Roose F., Herman P. M. J. Ecological evaluation of an experimental beneficial use scheme for dredged sediment disposal in shallow tidal waters // Marine Pollution Bulletin. – 2011. – Vol. 62, iss. 1. – P. 99–108. – https://doi.org/10.1016/j.marpolbul.2010.09.005