Distribution of Polonium-210 in water and suspended matter in Crimea water bodies with different salinity
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.details##
Abstract
The paper presents the results of monitoring of the natural radionuclide polonium-210 (210Po) in nine salt lakes, located in different regions of the Crimean Peninsula, carried out in 2020–2021. The purpose of the research was to study the features of 210Ро distribution between dissolved and suspended phases in the waters of Crimean lakes, characterized by different salinity values. Polonium-210 activity concentrations were determined using radiochemical techniques and alpha-spectrometric measurements. Dissolved 210Ро activity concentrations varied from 1.2 to 22.9 mBq·L–1 in lakes of different salinity, with the highest values obtained in hypersaline lakes. Concentrations of 210Po in suspended matter were relatively high and did not depend on the salinity of the medium. The highest 210Po activity concentration on suspended matter was obtained in the brackish water lake Kyzyl-Yar — 411.7 Bq·kg–1 dry weight. Polonium associated with suspended matter is, most likely, the main form of 210Po entering the studied lakes. 210Po Partitioning Coefficients between dissolved and particulate phases varied in a range of 103÷105 kg/L.
Authors
References
Aarkrog A., Baxter M. S., Bettencourt A. 0., Bojanowski R., Bologa A., Charmasson S., Cunha I., Delfanti R., Duran E., Holm E., Jeffree R., Livingston H. D., Mahapanyawong S., Nies H., Osvath I., Pingyu L., Povinec P. P., Sanchez A., Smith J. N., Swift D. Acomparisonofdosesfrom 137Csand 210Po in marine food: a major international study // Journal of Environmental Radioactivity. – 1997. – Vol. 34, iss. 1. – P. 69–90. – https://doi.org/10.1016/0265-931X(96)00005-7
Anufrieva E. V., Shadrin N. V., Shadrina S. N. History of research on biodiversity in Crimean hypersaline waters // Arid Ecosystems. – 2017. – Vol. 7, nr 1. – P. 52–58. – https://doi.org/10.1134/S2079096117010036
Anufriieva E. V., Shadrin N. V. Diversity of fauna in Crimean hypersaline water bodies // Journal of Siberian Federal University. Biology. – 2018. – Vol. 11, nr 4. – P. 294–305. – https://doi.org/10.17516/1997-1389-0073
Balushkina E. V., Golubkov S. M., Golubkov M. S., Litvinchuk L. F., Shadrin N. V. Characteristic features of ecosystems of hyperhaline lakes of the Crimea // Proceedings of the Zoological Institute of the Russian Academy of Sciences. – 2005. – Vol. 308. – P. 5–13 (in Russ.).
Balushkina E. V., Golubkov S. M., Golubkov M. S., Litvinchuk L. F., Shadrin N. V. Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems // Zhurnal obshchei biologii. – 2009. – Vol. 70, nr 6. – P. 504–514 (in Russ.).
Baxter M. S. Technologically enhanced radioactivity: an overview // Journal of Environmental Radioactivity. – 1996. – Vol. 32, iss. 1/2. – P. 3–17. – https://doi.org/10.1016/0265-931X(95)00076-M
Benoit G., Hemond H. F. Polonium-210 and lead-210 remobilization from lake sediments in relation to iron and manganese cycling // Environmental Science and Technology. – 1990. – Vol. 24, iss. 8. – P. 1224–1234. – https://doi.org/10.1021/es00078a010
Bulyon V. V., Anohina L. E., Arakelova E. S. Primary production of the hypersaline lakes of the Crimea // Proceedings of the Zoological Institute / USSR Academy of Sciences. – Leningrad : Izd-vo Akad. nauk SSSR, 1989. – Vol. 205. – P. 14–25 (in Russ.).
Carvalho F. P. Distribution, cycling and mean residence time of 226Ra, 210Pb and 210Po in the Tagus estuary // Science of the Total Environment. – 1997. – Vol. 196, iss. 2. – P. 151–161. – https://doi.org/10.1016/S0048-9697(96)05416-2
Cherry R. D., Heyraud M. Evidence of high natural radiation doses in certain mid-water oceanic organisms // Science. – 1982. – Vol. 218, iss. 4567. – P. 54–56. – https://doi.org/10.1126/science.7123217
Cherry R. D., Shannon L. V. The alpha radioactivity of marine organisms // Atomic Energy Review. – 1974. – Vol. 12, iss. 1. – P. 3–45.
Determination of 210Po and 210Pb in mussel, fish, sediment, petroleum // Procedures for determination of 239,240Pu, 241Am, 237Np, 234,238U, 228,230,232Th, 99Tc and 210Pb- 210Po in environmental materials / Chen Q. J. [et al.] ; RISØ Nat. Lab. – Denmark : Pitney Bowes Management Services, 2001. – P. 27–29.
Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards / IAEA // IAEA. – 1992. – URL: https://www.iaea.org/publications/search?keywords=Effects+of+Ionizing+Radiation+on+Plants+ and+Animals+at+Levels+Implied+by+Current+Radiation+Protection+Standards&Search=Search (accessed date: 12.05.2022).
Figgins P. E. The radiochemistry of polonium : NAS – NS 3037 / Nat. Acad. of Science, Nat. Research Council. – USA : [s. n.], 1961. – 74 p. – (Nuclear science series).
Kim G., Kim S.-J., Harada K., Schultz M. K., Burnett W. C. Enrichment of excess 210Po in anoxic ponds // Environmental Science and Technology. – 2005. – Vol. 39, iss. 13. – P. 4894–4899. – https://doi.org/10.1021/es0482334
Lazorenko G. E. Accumulation of 210Ро by the Black Sea bottom sediments // Dopovidi Natsional’noi akademii nauk Ukrainy. – 2000. – № 9. – P. 203–207 (in Russ.).
Lazorenko G. E. Distribution of natural radionuclide 210Ро in components of the Black Sea ecosystem // Radioecological response of the Black Sea to the Chernobyl accident / ed. by G. G. Polikarpov, V. N. Egorov. – Sevastopol : EKOSEA–Hydrophysics, 2008. – P. 311–313 (in Russ.).
Lazorenko G., Polikarpov G., Osvath I. 210Ро accumulation by components of the Black Sea ecosystem // Radioprotection. – 2009. – Vol. 44, iss. 5. – P. 981–986. – https://doi.org/10.1051/radiopro/20095175
Management of radioactive waste from the mining and milling of ores / IAEA // IAEA. – 2002. – URL: https://www.iaea.org/publications/search?keywords=Management+of+Radioactive+Waste+ from+the+Mining+and+Milling+of+Ores (accessed date: 12.05.2022).
Mirzoeva N. Yu., Korotkov A A., Cogan S., Trapeznikov A. V., Lazorenko G. E. 210Po in Сrimean salt lakes // Journal of Environmental Radioactivity. – 2020. – Vol. 219. – Art. 106270. – https://doi.org/10.1016/j.jenvrad.2020.106270
Momoshima N., Song L.-X., Osaki S., Maeda Y. Biologically induced Po emission from fresh water // Journal of Environmental Radioactivity. – 2002. – Vol. 63, iss. 2. – P. 187–197. – https://doi.org/10.1016/S0265-931X(02)00028-0
Momoshima N., Song L.-X., Osaki S., Maeda Y. Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin // Environmental Science and Technology. 2001. – Vol. 35, iss. 14. – P. 2956–2960. – https://doi.org/10.1021/es001730+
Othman I., Al-Masri M. S. Impact of phosphate industry on the environment: a case study // Applied Radiation and Isotopes. – 2007. – Vol. 65, iss. 1. – P. 131–141. – https://doi.org/10.1016/j.apradiso.2006.06.014
Pasinkov A. A, Sotskova L. M., Chaban V. I. Environmentalproblemsofconservationandsustainable use balneological resources of salt lakes of the Crimea // Scientific Notes of the V. I. Vernadsky Taurida National University. Geography. – 2014. – Vol. 27, № 2. – P. 97–117 (in Russ.).
Radiation protection and the management radiation protection of radioactive waste in the oil and gas industry / IAEA // IAEA. – 2003. – URL: https://www.iaea.org/publications/6747/radiationprotection-and-the-management-of-radioactive-waste-in-the-oil-and-gas-industry (accessed date: 12.05.2022).
Radiochemistry procedures manual : EPA 520/5-84-006 / Eastern Environmental Radiation Facility ; comp. and ed. by R. Lieberman. – Washington : U. S. Environmental Protection Agency, 1984. – 247 p.
Rutgers van der Loeff M. M., Geiber W. U- and Th-series nuclides as tracers of particle dynamics, scavenging and biogeochemical cycles in the oceans // U/Th series nuclides in aquatic systems / eds: S. Krishnaswami, J. K. Cochran. – Amsterdam : Elsevier, 2008. – Chap. 7 – P. 227–268.
Shadrin N. V., Anufriieva E. V. Structure and trophic relations in hypersaline environments // Biology Bulletin Reviews. – 2020. – Vol. 10, iss. 1. – P. 48–56. – https://doi.org/10.1134/S2079086420010065
Shadrin N. V., Golubkov S. M., Balushkina E. V., Orleansky V. K., Mikodjuk O. S. Ecosystem response of hypersaline Bakalskoye Lake (Crimea, Black Sea) on climatic peculiarities of 2004 // Morskoi ekologicheskii zhurnal. – 2004. – Vol. 3, № 4. – P. 74 (in Russ.).
Sockova L. M., Smirnov V. O., Protciv A. V., Fil P. P. Problems of preservation of salty lakes of northwest and western coasts of the Crimea // Scientific Notes of the V. I. Vernadsky Crimean Federal University. Geography. Geology. – 2017. – Vol. 3, № 3, pt 1. – P. 240–250 (in Russ.).
The environmental behaviour of polonium / IAEA // IAEA. – 2017. – URL: https://www.iaea.org/publications/search?keywords=The+environmental+behaviour+of+polonium (accessed date: 12.05.2022).
Urbakh V. Yu. Biometricheskie metody / Akad. nauk SSSR, Inst. biol. fiziki. – 2-e izd., pererab. i dop. – Moskva : Nauka, 1964. – 415 s. (in Russ.).
Wei C.-L., Murray J. W. The behavior of scavenged isotopes in marine anoxic environments: 210Pb and 210Po in the water column of the Black Sea // Geochimica et Cosmochimica Acta. – 1994. – Vol. 58, iss. 7. – P. 1795–1811. – https://doi.org/10.1016/0016-7037(94)90537-1
Wildgust M. A., McDonald P., White K. N. Temporal changes of 210Po in temperate coastal waters // Science of the Total Environment. – 1998. – Vol. 214, iss. 1/3. – P. 1–10. – https://doi.org/10.1016/S0048-9697(98)00050-3
Yadav D. N., Sarin M. M. Ra-Po-Pb isotope systematic in waters of Sambhar Salt Lake, Rajasthan (India): geochemical characterization and particulate reactivity // Journal of Environmental Radioactivity.–2009.–Vol.100,iss.1.–P.17–22.–https://doi.org/10.1016/j.jenvrad.2008.09.005