Поражение раковины устриц сверлящими губками семейства Clionaidae: угроза для аквакультуры
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Аннотация
В последнее время всё больше внимания уделяется проблеме поселения на раковинах моллюсков таких эпибионтов-вредителей, как губки семейства Clionaidae. Это связано с их негативным воздействием на массовые объекты марикультуры, в частности на тихоокеанских устриц Magallana gigas (Thunberg, 1793). Заражённые особи изымаются из товарооборота, что приводит к коммерческим потерям в марикультурных хозяйствах. У заражённых устриц наблюдается снижение скорости роста, уменьшение массы мягких тканей, а также увеличивается процент смертности особей в популяции. Кроме того, у заражённых особей фиксируется обсеменённость патогенной для человека микрофлорой. Несмотря на очевидную фундаментальную и практическую актуальность, информация о механизмах влияния сверлящих губок на функциональное состояние двустворчатых моллюсков довольно ограничена, фрагментарна и не структурирована. Анализ и обобщение данных могут способствовать разработке комплексных мероприятий, направленных на предотвращение заражения, смягчение негативных последствий и разработку методов лечения двустворчатых моллюсков при инвазии сверлящими губками. Данная обзорная работа посвящена обновлению и систематизации информации о распространении сверлящих губок семейства Clionaidae, их влиянии на организм двустворчатых моллюсков на примере тихоокеанских устриц, а также экономических последствиях распространения инвазии губок среди объектов марикультуры.
Авторы
Библиографические ссылки
Гаевская А. В. Паразиты, болезни и вредители мидий (Mytilus, Mytilidae). II. Моллюски (Mollusca). – Севастополь : ЭКОСИ–Гидрофизика, 2006. – 100 с. – https://repository.marine-research.ru/handle/299011/7876
Гаевская А. В., Лебедовская М. В. Гигантская устрица (Crassostrea gigas) (Thunberg, 1793) – общая характеристика // Паразиты и болезни гигантской устрицы (Crassostrea gigas) в условиях культивирования / НАН Украины, Ин-т биологии юж. морей им. А. О. Ковалевского. – Севастополь : ЭКОСИ–Гидрофизика, 2010. – Гл. 2. – С. 15-22. – https://repository.marine-research.ru/ handle/299011/2578
Гаевская А. В., Лебедовская М. В. Микробиологические и паразитологические аспекты биотехнологии культивирования гигантской устрицы (Crassostrea gigas) в Чёрном море // Промысловые биоресурсы Чёрного и Азовского морей / НАН Украины, Ин-т биологии юж. морей им. А. О. Ковалевского. – Севастополь : ЭКОСИ–Гидрофизика, 2011. – Гл. 6.2. – С. 193–209. – https://repository.marine-research.ru/handle/299011/1363
Копытина Н. И., Лебедовская М. В. Микромицеты–эпибионты гигантской устрицы Crassostrea gigas, культивируемой в Чёрном море // Морской экологический журнал. – 2014. – Т. 13, № 2. – С. 41–44. – https://repository.marine-research.ru/handle/299011/1341
Кракатица Т. Ф. Сокращение ареала и уменьшение численности устриц в Егорлыцком заливе // Моллюски. Основные результаты их изучения : автореф. докл., сб. 6 / АН СССР, Зоол. ин-т. – Ленинград : Наука, 1979. – С. 112–114.
Лебедовская М. В. Морфометрические и микробиологические показатели гигантской устрицы Crassostrea gigas при поражении сверлящей губкой Pione vastifica // Морской экологический журнал. – 2013. – Т. 12, № 1. – С. 48–51. – https://repository.marine-research.ru/handle/299011/1262
Шубникова Е. А. Технические средства выращивания гигантской устрицы // Биологическое разнообразие: изучение, сохранение, восстановление, рациональное использование : материалы II Междунар. науч.-практ. конф., Керчь, 27–30 мая 2020 г. / Керчен. гос. мор. технол. ун-т [и др.]. – Симферополь : АРИАЛ, 2020. – С. 518–523. – https://elibrary.ru/emdjok
Alderman D. J. Epizootiology of Marteilia refringens in Europe // Marine Fisheries Review. – 1979. – Vol. 41, no. 1/2. – P. 67–69.
Allam B., Espinosa E. P. Bivalve immunity and response to infections: are we looking at the right place? // Fish & Shellfish Immunology. – 2016. – Vol. 53. – P. 4–12. – https://doi.org/10.1016/j.fsi.2016.03.037
Allam B., Espinosa E. P. Mucosal immunity in mollusks // Mucosal Health in Aquaculture / Eds: B. H. Beck, E. Peatman. – Amsterdam [et. al.] : Acad. Press, 2015. – P. 325–370. – https://doi.org/10.1016/B978-0-12-417186-2.00012-1
Allam B., Raftos D. Immune responses to infectious diseases in bivalves // Journal of Invertebrate Pathology. – 2015. – Vol. 131. – P. 121–136. – https://doi.org/10.1016/j.jip.2015.05.005
Allen S. M., Burnett L. E. The effects of intertidal air exposure on the respiratory physiology and the killing activity of hemocytes in the pacific oyster, Crassostrea gigas (Thunberg) // Journal of Experimental Marine Biology and Ecology. – 2008. – Vol. 357, iss. 2. – P. 165–171. – https://doi.org/10.1016/j.jembe.2008.01.013
Andreyeva A. Y., Kladchenko E. S., Kukhareva T. A. Shift in functional and morphological parameters of the Pacific oyster hemocytes after exposure to hypoxia // Regional Studies in Marine Science. – 2021. – Vol. 48. – Art. no. 102062. – https://doi.org/10.1016/j.rsma.2021.102062
Balouet G., Poder M., Cahour A. Haemocytic parasitosis: morphology and pathology of lesions in the French flat oyster, Ostrea edulis L. // Aquaculture. – 1983. – Vol. 34, iss. 1-2. – P. 1–14. – https://doi.org/10.1016/0044-8486(83)90287-9
Bautista-Guerrero E., Carballo J. L., Maldonado M. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs? // Coral Reefs. – 2014. – Vol. 33. – P. 259–266. – https://doi.org/10.1007/s00338-013-1094-1
Behringer D. C., Wood C. L., Krkošek M., Bushek D. Disease in fisheries and aquaculture // Marine Disease Ecology / Eds: B. R. Silliman [et al.]. – Oxford : Oxford Univ. Press, 2020. – P. 183–212.
Böök I. M. Boring sponges and bored oysters–interactions between the bioeroding sponge Cliona sp. and the New Zealand flat oyster Ostrea chilensis : Thesis / Victoria Univ. of Wellington. – Wellington, New Zealand, 2024. – 183 p.
Borchiellini C., Chombard C., Manuel M., Alivon E., Vacelet J., Boury-Esnault N. Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution // Molecular Phylogenetics and Evolution. – 2004. – Vol. 32, iss. 3. – P. 823–837. – https://doi.org/10.1016/j.ympev.2004.02.021
Borchiellini C., de Pao Mendonca K., Vernale A., Rocher C., Ereskovsky A., Vacelet J., Renard E. Porifera (sponges): recent knowledge and new perspectives // eLS [Encyclopedia of Life Sciences]. – Chichester : John Wiley & Sons, 2021. – Vol. 2. – P. 1–10. – https://doi.org/10.1002/9780470015902.a0029283
Botta R., Asche F., Borsum J. S., Camp E. V. A review of global oyster aquaculture production and consumption // Marine Policy. – 2020. – Vol. 117. – Art. no. 103952. – https://doi.org/10.1016/j.marpol.2020.103952
Boury-Esnault N., Klautau M., Bezac C., Wulff J., Sole-Cava A. M. Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama // Journal of the Marine Biological Association of the United Kingdom. – 1999. – Vol. 79, iss. 1. – P. 39–50. – https://doi.org/10.1017/S0025315498000046
Calcinai B., Bavestrello G., Cerrano C. Bioerosion micro-patterns as diagnostic characteristics in boring sponges // Bollettino dei Musei e degli Istituti Biologici dell’Universitá di Genova. – 2004. – Vol. 68. – P. 229–238.
Canesi L., Gallo G., Gavioli M., Pruzzo C. Bacteria–hemocyte interactions and phagocytosis in marine bivalves // Microscopy Research and Technique. – 2002. – Vol. 57, no. 6. – P. 469–476. – https://doi.org/10.1002/jemt.10100
Carballo J. L., Bautista E., Nava H., Cruz-Barraza J. A., Chávez J. A. Boring sponges, an increasing threat for coral reefs affected by bleaching events // Ecology and Evolution. – 2013. – Vol. 3, iss. 4. – P. 872–886. – https://doi.org/10.1002/ece3.452
Carballo J. L., Bell J. J. Climate change and sponges: an introduction // Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization / eds: J. L. Carballo, J. J. Bell. – Cham, Switzerland : Springer, 2017. – P. 1–11. – https://doi.org/10.1007/978-3-319-59008-0_1
Carballo J. L., Cruz-Barraza J. A., Vega C., Nava H., Chávez-Fuentes M. D. C. Sponge diversity in eastern tropical Pacific coral reefs: an interoceanic comparison // Scientific Reports. – 2019. – Vol. 9, no. 1. – Art. no. 9409. – https://doi.org/10.1038/s41598-019-45834-4
Carroll J. M., Shaughnessy K. A., Diedrich G. A., Finelli C. M. Are oysters being bored to death? Influence of Cliona celata on Crassostrea virginica condition, growth and survival // Diseases of Aquatic Organisms. – 2015. – Vol. 117, no. 1. – P. 31–44. – https://doi.org/10.3354/dao02928
Carroll J., Reitsma J. Fouling by Cliona (boring sponge) // Diseases of Bivalves / Ed. R. Smolowitz. – London [et al.] : Acad. Press, 2025. – P. 37–50. – https://doi.org/10.1016/B978-0-12-820339-2.00010-3
Carver C. E., Thériault I., Mallet A. L. Infection of cultured eastern oysters Crassostrea virginica by the boring sponge Cliona celata, with emphasis on sponge life history and mitigation strategies // Journal of Shellfish Research. – 2010. – Vol. 29, no. 4. – P. 905–915. – https://doi.org/10.2983/035.029.0423
Chelebieva E. S., Lavrichenko D. S., Gostyukhina O. L., Podolskaya M. S., Kladchenko E. S. The boring sponge (Pione vastifica, Hancock, 1849) induces oxidative stress in the Pacific oyster (Magallana gigas, Thunberg, 1793) // Comparative Biochemistry and Physiology. Pt. B: Biochemistry and Molecular Biology. – 2024. – Vol. 273. – Art. no. 110980. – https://doi.org/10.1016/j.cbpb.2024.110980
Chen Y., Liu C., Li S., Liu Z., Xie L., Zhang R. Repaired shells of the pearl oyster largely recapitulate normal prismatic layer growth : A proteomics study of shell matrix proteins // ACS Biomaterials Science & Engineering. – 2018. – Vol. 5, iss. 2. – P. 519–529. – https://doi.org/10.1021/acsbiomaterials.8b01355
Chi Y., Yang H., Shi C., Yang B., Bai X., Li Q. Comparative transcriptome and gene co-expression network analysis identifies key candidate genes associated with resistance to summer mortality in the Pacific oyster (Crassostrea gigas) // Aquaculture. – 2023. – Vol. 577. – Art. no. 739922. – https://doi.org/10.1016/j.aquaculture.2023.739922
Clark M. S., Peck L. S., Arivalagan J., Backeljau T., Berland S., Cardoso J. C. R., Caurcel C., Chapelle G., De Noia M., Dupont S., Gharbi K., Hoffman J. I., Last K. S., Marie A., Melzner F., Michalek K., Morris J., Power D. M., Ramesh K., Sanders T., Sillanpää K., Sleight V. A., Stewart-Sinclair P. J., Sundell K., Telesca L., Vendrami D. L. J., Ventura A., Wilding T. A., Yarra T., Harper E. M. Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics // Biological Reviews. – 2020. – Vol. 95, no. 6. – P. 1812–1837. – https://doi.org/10.1111/brv.12640
Coates C. J., Söderhäll K. The stress-immunity axis in shellfish // Journal of Invertebrate Pathology. – 2021. – Vol. 186. – Art. no. 107492. – https://doi.org/10.1016/j.jip.2020.107492
Coleman S. E. The effects of boring sponge on oyster soft tissue, shell integrity, and predator-related mortality : Thesis / The Univ. of North Carolina. – Chapel Hill, 2014. – 54 p.
Costello K. E., Lynch S. A., O’Riordan R. M., McAllen R., Culloty S. C. The importance of marine bivalves in invasive host-parasite introductions // Frontiers in Marine Science. – 2021. – Vol. 8. – Art. no. 609248. – https://doi.org/10.3389/fmars.2021.609248
Daume S., Fromont J., Parker F., Davidson M., Murphy D., Hart A. Quantifying sponge erosions in Western Australian pearl oyster shells // Aquaculture Research. – 2010. – Vol. 41, iss. 9. – P. e260–e267. – https://doi.org/10.1111/j.1365-2109.2010.02518.x
De Bakker D. M., Webb A. E., van den Bogaart L. A., van Heuve S. M., Meesters E. H., van Duyl F. C. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao // PloS ONE. – 2018. – Vol. 13, iss. 5. – Art. no. e0197824. – https://doi.org/10.1371/journal.pone.0197824
De la Ballina N. R., Maresca F., Cao A., Villalba A. Bivalve haemocyte subpopulations : a review // Frontiers in Immunology. – 2022. – Vol. 13. – Art. no. 826255. – https://doi.org/10.3389/fimmu.2022.826255
De Paula S. M., Silveira M. Studies on molluscan shells: contributions from microscopic and analytical methods // Micron. – 2009. – Vol. 40, iss. 7. – P. 669–690. – https://doi.org/10.1016/j.micron.2009.05.006
Dieudonne J., Carroll J. M. The impacts of boring sponges on oyster health across multiple sites and tidal heights // Estuaries and Coasts. – 2022. – Vol. 45, iss. 1. – P. 213–224. – https://doi.org/10.1007/s12237-021-00942-1
Dohrmann M., Collins A. G., Woerheide G. New insights into the phylogeny of glass sponges (Porifera, Hexactinellida): monophyly of Lyssacinosida and Euplectellinae, and the phylogenetic position of Euretidae // Molecular Phylogenetics and Evolution. – 2009. – Vol. 52, iss. 1. – P. 257–262. – https://doi.org/10.1016/j.ympev.2009.01.010
Dorgan K. M., Moseley R. D., Titus E., Watson H., Cole S. M., Walton W. Dynamics of mud blister worm infestation and shell repair by oysters // The Biological Bulletin. – 2021. – Vol. 240, no. 2. – P. 118–131. – https://doi.org/10.1086/713145
Duckworth A. R., Peterson B. J. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells // Marine Biology. – 2013. – Vol. 160. – P. 27–35. – https://doi.org/10.1007/s00227-012-2053-z
Dunn R. P., Eggleston D. B., Lindquist N. Oyster-sponge interactions and bioerosion of reef-building substrate materials: implications for oyster restoration // Journal of Shellfish Research. – 2014. – Vol. 33, no. 3. – P. 727–738. – https://doi.org/10.2983/035.033.0307
Ehrlich H. The circle: biomineralization-demineralization-remineralization in nature // Marine Biological Materials of Invertebrate Origin / H. Ehrlich. – Cham, Switzerland : Springer, 2019. – P. 53–65. – https://doi.org/10.1007/978-3-319-92483-0_4
El-Sorogy A. S., Alharbi T., Richiano S. Bioerosion structures in high-salinity marine environments: Evidence from the Al-Khafji coastline, Saudi Arabia // Estuarine, Coastal and Shelf Science. – 2018. – Vol. 204. – P. 264–272. – https://doi.org/10.1016/j.ecss.2018.03.005
Elston R. A. Infectious diseases of the Pacific oyster, Crassostrea gigas // Annual Review of Fish Diseases. – 1993. – Vol. 3. – P. 259–276. – https://doi.org/10.1016/0959-8030(93)90038-D
Encomio V. G., Stickler S. M., Allen S. K., Chu F. L. Performance of «natural Dermo-resistant» oyster stocks – survival, disease, growth, condition and energy reserves // Journal of Shellfish Research. – 2005. – Vol. 24, iss. 1. – P. 143–155.
Ereskovsky A., Kovtun O. A., Pronin K. K., Apostolov A., Erpenbeck D., Ivanenko V. Sponge community of the western Black Sea shallow water caves: diversity and spatial distribution // PeerJ. – 2018. – Vol. 6. – Art. no. e4596. – https://doi.org/10.7717/peerj.4596
Ereskovsky A., Lavrov A. Porifera // Invertebrate Histology / Ed. E. E. LaDouceur. – Hoboken, NJ : Wiley-Blackwell, 2021. – P. 19–54.
Erpenbeck D., Gholami A., Hesni M. A., Ranjbar M. S., Galitz A., Eickhoff B., Namuth L., Schumacher T., Esmaeili H. R., Wörheide G., Teimori A. Molecular biodiversity of Iranian shallow water sponges // Systematics and Biodiversity. – 2020. – Vol. 18, iss. 2. – P. 192–202. – https://doi.org/10.1080/14772000.2020.1737978
Evcen A., Çınar M. E. Bioeroding sponge species (Porifera) in the Aegean Sea (Eastern Mediterranean) // Journal of the Black Sea / Mediterranean Environment. – 2015. – Vol. 21, no. 3. – P. 285–306.
Fang J. K. H., Schönberg C. H. L., Hoegh-Guldberg O., Dove S. Day – night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis Thiele, 1900 // Marine Biology. – 2016. – Vol. 163. – Art. no. 100. – https://doi.org/10.1007/s00227-016-2848-4
Ferrario F., Calcinai B., Erpenbeck D., Galli P., Wörheide G. Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge // Organisms Diversity & Evolution. – 2010. – Vol. 10. – P. 275–285. – https://doi.org/10.1007/s13127-010-0027-x
Fleury C., Marin F., Marie B., Luquet G., Thomas J., Josse C., Serpentini A., Lebel J. M. Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study // Tissue and Cell. – 2008. – Vol. 40, iss. 3. – P. 207–218. – https://doi.org/10.1016/j.tice.2007.12.002
Fromont J., Craig R., Rawlinson L., Alder J. Excavating sponges that are destructive to farmed pearl oysters in Western and Northern Australia // Aquaculture Research. – 2005. – Vol. 36, iss. 2. – P. 150–162. – https://doi.org/10.1111/j.1365-2109.2004.01198.x
Furuhashi T., Schwarzinger C., Miksik I., Smrz M., Beran A. Molluscan shell evolution with review of shell calcification hypothesis // Comparative Biochemistry and Physiology Pt. B: Biochemistry and Molecular Biology. – 2009. – Vol. 154, iss. 3. – P. 351–371. – https://doi.org/10.1016/j.cbpb.2009.07.011
Glynn P. W., Manzello D. P. Bioerosion and coral reef growth: a dynamic balance // Coral Reefs in the Anthropocene / Ed. C. Birkeland. – Dordrecht [et al.] : Springer, 2015. – P. 67–97. – https://doi.org/10.1007/978-94-017-7249-5_4
Gosling E. Marine Bivalve Molluscs. – 2nd ed. – Chichester, UK : John Wiley & Sons, 2015. – 536 p.
Gu Z., Wei H., Cheng F., Wang A., Liu C. Effects of air exposure time and temperature on physiological energetics and oxidative stress of winged pearl oyster (Pteria penguin) // Aquaculture Reports. – 2020. – Vol. 17. – Art. no. 100384. – https://doi.org/10.1016/j.aqrep.2020.100384
Guida V. G. The physiological ecology of the oyster-burrowing sponge symbiosis and the roles of symbioses in marine systems : PhD diss. / North Carolina State Univ. – Raleigh, USA, 1977. – 147 p.
Hanley T. C., White J. W., Stallings C. D., Kimbro D. L. Environmental gradients shape the combined effects of multiple parasites on oyster hosts in the northern Gulf of Mexico // Marine Ecology Progress Series. – 2019. – Vol. 612. – P. 111–125. – https://doi.org/10.3354/meps12849
Hine P. M. The inter-relationships of bivalve haemocytes // Fish & Shellfish Immunology. – 1999. – Vol. 9, iss. 5. – P. 367–385. – https://doi.org/10.1006/fsim.1998.0205
Holmes K. E. Effects of eutrophication on bioeroding sponge communities with the description of new West Indian sponges, Cliona spp. (Porifera: Hadromerida: Clionidae) // Invertebrate Biology. – 2000. – Vol. 119, no. 2. – P. 125–138. – https://doi.org/10.1111/j.1744-7410.2000.tb00001.x
Hooper J. N. A., Van Soest R. W. M. Systema Porifera. A guide to the classification of sponges // System a Porifera : a Guide to the Classification of Sponges / Eds: J. N. A. Hooper [et al.]. – Boston : Springer, 2002. – P. 1–7. – https://doi.org/10.1007/978-1-4615-0747-5_1
Huang J., Liu Y., Jiang T., Dong W., Xie L., Zhang R. Direct control of shell regeneration by the mantle tissue in the pearl oyster Pinctada fucata // Journal of Structural Biology. – 2023. – Vol. 215, iss. 2. – Art. no. 107956. – https://doi.org/10.1016/j.jsb.2023.107956
Huang J., Zhang R. The mineralization of molluscan shells: some unsolved problems and special considerations // Frontiers in Marine Science. – 2022. – Vol. 9. – Art. no. 874534. – https://doi.org/10.3389/fmars.2022.874534
Huiping Y. Immunological assays of hemocytes in molluscan bivalves as biomarkers to evaluate stresses for aquaculture // Bulletin of Japan Fisheries Research and Education Agency. – 2021. – No. 50. – P. 31–45.
Hüning A. K., Lange S. M., Ramesh K., Jacob D. E., Jackson D. J., Panknin U., Gutowska M. A., Philipp E. E. R., Rosenstiel P., Lucassen M., Melzner F. A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels // Marine Genomics. – 2016. – Vol. 27. – P. 57–67. – https://doi.org/10.1016/j.margen.2016.03.011
Ivanina A. V., Falfushynska H. I., Beniash E., Piontkivska H., Sokolova I. M. Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas // Journal of Experimental Biology. – 2017. – Vol. 220, no. 18. – P. 3209–3221. – https://doi.org/10.1242/jeb.160861
Jacob D. E., Soldati A. L., Wirth R., Huth J., Wehrmeister U., Hofmeister W. Nanostructure, composition and mechanisms of bivalve shell growth // Geochimica et Cosmochimica Acta. – 2008. – Vol. 72, iss. 22. – P. 5401–5415. – https://doi.org/10.1016/j.gca.2008.08.019
Johnstone M. B., Gohad N. V., Falwell E. P., Hansen D. C., Hansen K. M., Mount A. S. Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, Crassostrea virginica (Gmelin, 1791) // Journal of Experimental Marine Biology and Ecology. – 2015. – Vol. 463. – P. 8–16. – https://doi.org/10.1016/j.jembe.2014.10.014
Kawabe S., Takada M., Shibuya R., Yokoyama Y. Biochemical changes in oyster tissues and hemolymph during long-term air exposure // Fisheries Science. – 2010. – Vol. 76. – P. 841– 855. – https://doi.org/10.1007/s12562-010-0263-1
Kingma E. The Role of the excavating sponge Cliona celata in oyster shells : master’s thesis / Utrecht Univ. Netherlands. – Utrecht, 2022. – 30 p.
Kladchenko E. S., Andreyeva A. Y., Kukhareva T. A. effect of ranged short-term hypoxia on functional and morphological parameters of hemocytes in the Pacific oyster Сrassostrea gigas (Thunberg, 1793) // Journal of Evolutionary Biochemistry and Physiology. – 2022. – Vol. 58, no. 1. – P. 45–53. – https://doi.org/10.1134/S0022093022010045
Kladchenko E. S., Chelebieva E. S., Podolskaya M. S., Gostyukhina O. L., Gavruseva T. V., Lavrichenko D. S. Effects of boring sponge Pione vastifica (Hancock, 1849) infestation on redox status and histological structure in Pacific oyster Magallana gigas (Thunberg, 1793) gills // Ecologica Montenegrina. – 2024. – Vol. 77. – P. 211–223. – https://doi.org/10.37828/em.2024.77.21
Kocot K. M., Aguilera F., McDougall C., Jackson D. J., Degnan B. M. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization // Frontiers in Zoology. – 2016. – Vol. 13. – Art. no. 23. – https://doi.org/10.1186/s12983-016-0155-z
Kumar P. S. Bioeroding sponges in aquaculture systems // Marine Sponges: Chemicobiological and Biomedical Applications / Eds: R. Pallela, H. Ehrlich. – Hyderabad, India : Springer, 2016. – P. 53–56. – https://doi.org/10.1007/978-81-322-2794-6_4
Le Cam S., Viard F. Infestation of the invasive mollusc Crepidula fornicata by the native shell borer Cliona celata: a case of high parasite load without detrimental effects // Biological Invasions. – 2011. – Vol. 13. – P. 1087–1098. – https://doi.org/10.1007/s10530-011-9958-1
Liao Z., Liu F., Wang Y., Fan X., Li Y., He J., Buttino I., Yan X., Zhang X., Shi G. Transcriptomic response of Mytilus coruscus mantle to acute sea water acidification and shell damage // Frontiers in Physiology. – 2023. – Vol. 14. – Art. no. 1289655. – https://doi.org/10.3389/fphys.2023.1289655
Maldonado M., Riesgo A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae) // Marine Biology. – 2009. – Vol. 156. – P. 2181–2197. – https://doi.org/10.1007/s00227-009-1248-4
Mao Che L., Le Campion-Alsumar, T., Boury-Esnault N., Payri C., Golubic S., Bézac C. Biodegradation of shells of the black pearl oyster, Pinctada margaritifera var. cumingii, by microborers and sponges of French Polynesia // Marine Biology. – 1996. – Vol. 126. – P. 509–519. – https://doi.org/10.1007/BF00354633
Mariani S., Uriz M. J., Turon X. Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution // Marine Biology. – 2000. – Vol. 137. – P. 783–790. – https://doi.org/10.1007/s002270000400
Marie B., Zanella-Cléon I., Guichard N., Becchi M., Marin F. Novel proteins from the calcifying shell matrix of the Pacific oyster Crassostrea gigas // Marine Biotechnology. – 2011. – Vol. 13. – P. 1159–1168. – https://doi.org/10.1007/s10126-011-9379-2
Marine Benthic Fauna of Chilean Patagonia : Illustrated Identification Guide / Eds: V. Häussermann, G. Försterra – Santiago : Nature in Focus, 2009. – 1000 p.
McDowell I. C., Nikapitiya C., Aguiar D., Lane C. E., Istrail S., Gomez-Chiarri M. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance // PLoS One. – 2014. – Vol. 9, iss. 8. – Art. e105097. – https://doi.org/10.1371/journal.pone.0105097
Molnar J. L., Gamboa R. L., Revenga C., Spalding M. D. Assessing the global threat of invasive species to marine biodiversity // Frontiers in Ecology and the Environment. – 2008. – Vol. 6, no. 9. – P. 485–492. – https://doi.org/10.1890/070064
Moor J., Ropicki A., Anderson J. L., Asche F. Stochastic modeling and financial viability of mollusk aquaculture // Aquaculture. – 2022. – Vol. 552. – Art. no. 737963. – https://doi.org/10.1016/j.aquaculture.2022.737963
Morrow C., Cárdenas P. Proposal for a revised classification of the Demospongiae (Porifera) // Frontiers in Zoology. – 2015. – Vol. 12. – Art. no. 7. – https://doi.org/10.1186/s12983-015-0099-8
Mote S., Schönberg C. H., Samaai T., Gupta V., Ingole B. A new clionaid sponge infests live corals on the west coast of India (Porifera, Demospongiae, Clionaida) // Systematics and Biodiversity. – 2019. – Vol. 17, iss. 2. – P. 190–206. – https://doi.org/10.1080/14772000.2018.1513 430
Mount A. S., Wheeler A. P., Paradkar R. P., Snider D. Hemocyte-mediated shell mineralization in the eastern oyster // Science. – 2004. – Vol. 304, no. 5668. – P. 297–300. – https://doi.org/10.1126/science.1090506
Neumann A. C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa 1, 2 // Limnology and Oceanography. – 1966. – Vol. 11, iss. 1. – P. 92–108. – https://doi.org/10.4319/lo.1966.11.1.0092
Pernet F., Lupo C., Bacher C., Whittington R. J. Infectious diseases in oyster aquaculture require a new integrated approach // Philosophical Transactions of the Royal Society. B: Biological Sciences. – 2016. – Vol. 371, no. 1689. – Art. no. 20150213. – https://doi.org/10.1098/rstb.2015.0213
Piscitelli M., Corriero G., Gaino E., Uriz M. J. Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea // Invertebrate Biology. – 2011. – Vol. 130, no. 1. – P. 1–10. – https://doi.org/10.1111/j.1744-7410.2010.00216.x
Pourmozaffar S., Tamadoni Jahromi S., Rameshi H., Sadeghi A., Bagheri T., Behzadi S., Gozari M., Reza Zahedi M., Abrari Lazarjani S. The role of salinity in physiological responses of bivalves // Reviews in Aquaculture. – 2020. – Vol. 12, iss. 3. – P. 1548–1566. – https://doi.org/10.1111/raq.12397
Pouvreau S., Lapègue S., Arzul I., Boudry P. Fifty years of research to counter the decline of the European flat oyster (Ostrea edulis): a review of French achievements and prospects for the restoration of remaining beds and revival of aquaculture production // Aquatic Living Resources. – 2023. – Vol. 36. – Art. no. 13. – https://doi.org/10.1051/alr/2023006
Pulido Mantas T., Bavestrello G., Bertolino M., Cerrano C., Pica D., Roveta C., Calcinai B. A 3D innovative approach supporting the description of boring sponges of the precious red coral Corallium rubrum // Journal of Marine Science and Engineering. – 2022. – Vol. 10, iss. 7. – Art. no. 868. – https://doi.org/10.3390/jmse10070868
Pyecroft S. B. Shell-boring polychaetes (mudworms) and sponges affecting oysters, scallops, and abalone // Aquaculture Pathophysiology / Eds: F. S. B. Kibenge [et al.]. – London [et al.] : Acad. Press, 2022. – Vol. 2, chap. 77. – P. 583–591. – https://doi.org/10.1016/B978-0-323-95434-1.00077-2
Reveillaud J., Allewaert C., Pérez T., Vacelet J., Banaigs B., Vanreusel A. Relevance of an integrative approach for taxonomic revision in sponge taxa: case study of the shallow-water Atlanto-Mediterranean Hexadella species (Porifera: Ianthellidae: Verongida) // Invertebrate Systematics. – 2012. – Vol. 26, no. 3. – P. 230–248. – https://doi.org/10.1071/IS11044
Rosell D. Morphological and ecological relationships of two clionid sponges // Ophelia. – 1994. – Vol. 40, no. 1. – P. 37–50. – https://doi.org/10.1080/00785326.1994.10429549
Rosell D., Uriz M. J. Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key // Organisms Diversity & Evolution. – 2002. – Vol. 2, iss. 1. – P. 55–86. – https://doi.org/10.1078/1439-6092-00033
Rosell D., Uriz M. J. Phylogenetic relationships within the excavating Hadromerida (Porifera), with a systematic revision // Cladistics. – 1997. – Vol. 13, iss. 4. – P. 349–366. – https://doi.org/10.1006/clad.1997.0047
Rosell D., Uriz M. J., Martin D. Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea) // Journal of the Marine Biological Association of the United Kingdom. – 1999. – Vol. 79, iss. 3. – P. 409–413. – https://doi.org/10.1017/S0025315498000526
Rützler K. Impact of crustose clionid sponges on Caribbean reef corals // Acta Geológica Hispánica. – 2002. – Vol. 37, no. 1. – P. 61–72.
Rützler K. The role of burrowing sponges in bioerosion // Oecologia. – 1975. – Vol. 19, no. 3. – P. 203–216. – https://doi.org/10.1007/BF00345306
Sacristán-Soriano O., Turon X., Hill M. Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): the role of host phylogeny and environmental plasticity // Coral Reefs. – 2020. – Vol. 39, iss. 5. – P. 1285–1298. – https://doi.org/10.1007/s00338-020-01962-2
Schönberg C. H. L. Substrate effects on the bioeroding demosponge Cliona orientalis. Bioerosion rates // Marine Ecology. – 2002. – Vol. 23, iss. 4. – P. 313–326. – https://doi.org/10.1046/j.1439-0485.2002.02811.x
Schönberg C. H. L., Fang J. K. H., Carballo J. L. Bioeroding sponges and the future of coral reefs // Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization / Eds: J. L. Carballo, J. J. Bell. – Cham, Switzerland : Springer, 2017. – P. 179–372. – https://doi.org/10.1007/978-3-319-59008-0_7
Schönberg C. H. L., Ortiz J.-C. Is sponge bioerosion increasing // Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, Florida, USA, July 7–11, 2008 / Eds: B. Riegl, R. E. Dodge. – Davie, USA : Nat. Coral Reef Inst., 2008. – P. 520–523.
Šegvić-Bubić T., Žužul I., Talijančić I., Ugrin N., Lepen Pleić I., Žuvić L., Stagličić N., Grubišić L. Translocation and aquaculture impact on genetic diversity and composition of wild self-sustainable Ostrea edulis populations in the Adriatic Sea // Frontiers in Marine Science. – 2020. – Vol. 7. – Art. no. 84. – https://doi.org/10.3389/fmars.2020.00084
Shanks A. L., Wright W. G. Adding teeth to wave action: the destructive effects of waveborne rocks on intertidal organisms // Oecologia. – 1986. – Vol. 69. – P. 420–428. – https://doi.org/10.1007/BF00377065
Simkiss K., Wilbur K. M. Biomineralization. Cell Biology and Mineral Deposition. – San Diego, USA : Acad. Press, 1989. – 327 p.
Sivan G., Vidyalakshmi D., Yesudas A., Priyaja P. Bioerosion traces of an endolithic clionaid sponge on the gastropod shell of Tibia curta Sowerby II, 1842 // Marine Biodiversity. – 2023. – Vol. 53, iss. 2. – Art. no. 26. – https://doi.org/10.1007/s12526-023-01336-1
Sleight V. A., Thorne M. A., Peck L. S., Clark M. S. Transcriptomic response to shell damage in the Antarctic clam, Laternula elliptica: time scales and spatial localisation // Marine Genomics. – 2015. – Vol. 20. – P. 45–55. – https://doi.org/10.1016/j.margen.2015.01.009
Sousa H., Hinzmann M. Review : Antibacterial components of the Bivalve’s immune system and the potential of freshwater bivalves as a source of new antibacterial compounds // Fish & Shellfish Immunology. – 2020. – Vol. 98. – P. 971–80. – https://doi.org/10.1016/j.fsi.2019.10.062
Speights C. J., McCoy M. W. Range expansion of a fouling species indirectly impacts local species interactions // PeerJ. – 2017. – Vol. 5. – Art. no. e3911. – https://doi.org/10.7717/peerj.3911
Sreeremya S., Shobana M. F. Sponge bioerosion : a review // International Journal of Biochemistry and Biomolecules. – 2018. – Vol. 4, iss. 1. – P. 1–7. – https://doi.org/10.37628/ijbb.v4i1.267
Stefaniak L. M., McAtee J., Shulman M. J. The costs of being bored: effects of a clionid sponge on the gastropod Littorina littorea (L) // Journal of Experimental Marine Biology and Ecology. – 2005. – Vol. 327, iss. 1. – P. 103–114. – https://doi.org/10.1016/j.jembe.2005.06.007
Stubler A. D., Furman B. T., Peterson B. J. Effects of p CO2 on the interaction between an excavating sponge, Cliona varians, and a hermatypic coral, Porites furcata // Marine Biology. – 2014. – Vol. 161. – P. 1851–1859. – https://doi.org/10.1007/s00227-014-2466-y
Van In V., Ntalamagka N., O’Connor W., Wang T., Powell D., Cummins S. F., Elizur A. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata) // Peptides. – 2016. – Vol. 82. – P. 109–119. – https://doi.org/10.1016/j.peptides.2016.06.007
Stubler A. D., Robertson H., Styron H. J., Carroll J. M., Finelli C. M. Reproductive and recruitment dynamics of clionaid sponges on oyster reefs in North Carolina // Invertebrate Biology. – 2017. – Vol. 136, no. 4. – P. 365–378. – https://doi.org/10.1111/ivb.12188
Suzuki M., Nagasawa H. Mollusk shell structures and their formation mechanism // Canadian Journal of Zoology. – 2013. – Vol. 91, no. 6. – P. 349–366. – https://doi.org/10.1139/cjz-2012-0333
Taylor D. Impact damage and repair in shells of the limpet Patella vulgata // Journal of Experimental Biology. – 2016. – Vol. 219, no. 24. – P. 3927–3935. – https://doi.org/10.1242/jeb.149880
Van Soest R. W., Boury-Esnault N., Vacelet J., Dohrmann M., Erpenbeck D., De Voogd N. J., Santodomingo N., Vanhoorne B., Kelly M., Hooper J. N. Global diversity of sponges (Porifera) // PLoS one. – 2012. – Vol. 7, iss. 4. – Art. e35105. – https://doi.org/10.1371/journal.pone.0035105
Vaughn C. C., Hoellein T. J. Bivalve impacts in freshwater and marine ecosystems // Annual Review of Ecology, Evolution, and Systematics. – 2018. – Vol. 49, no. 1. – P. 183–208. – https://doi.org/10.1146/annurev-ecolsys-110617-062703
Wang X., Li P., Cao X., Liu B., He S., Cao Z., Xing S., Liu L., Li Z. H. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: a study of the Pacific oyster (Crassostrea gigas) // Environmental Pollution. – 2022. – Vol. 313. – Art. no. 120161. – https://doi.org/10.1016/j.envpol.2022.120161
Wang Y., Mao J., Fan Z., Hang Y., Tang A., Tian Y., Wang X., Hao Z., Han B., Ding J., Chang Y. Transcriptome analysis reveals core lncRNA-mRNA networks regulating melanization and biomineralization in Patinopecten yessoensis shell-infested by Polydora // BMC Genomics. – 2023. – Vol. 24, no. 1. – Art. no. 723. – https://doi.org/10.1186/s12864-023-09837-w
Warburton F. E. Inclusion of parental somatic cells in sponge larvae // Nature. – 1961. – Vol. 191, no. 4795. – P. 1317. – https://doi.org/10.1038/1911317a0
Watts J. C., Carroll J. M., Munroe D. M., Finelli C. M. Examination of the potential relationship between boring sponges and pea crabs and their effects on eastern oyster condition // Diseases of Aquatic Organisms. – 2018. – Vol. 130, iss. 1. – P. 25–36. – https://doi.org/10.3354/dao03257
Webb A. E., Pomponi S. A., van Duyl F. C., Reichart G. J., de Nooijer L. J. pH regulation and tissue coordination pathways promote calcium carbonate bioerosion by excavating sponges // Scientific Reports. – 2019. – Vol. 9, no. 1. – Art. no. 758. – https://doi.org/10.1038/s41598-018-36702-8
Webb A. E., van Heuven S. M., de Bakker D. M., van Duyl F. C., Reichart G. J., Nooijer L. J. Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates // Frontiers in Marine Science. – 2017. – Vol. 4. – Art. no. 311. – https://doi.org/10.3389/fmars.2017.00311
Weiner S., Addadi L. Crystallization pathways in biomineralization // Annual Review of Materials Research. – 2011. – Vol. 41, no. 1. – P. 21–40. – https://doi.org/10.1146/annurev-matsci-062910-095803
Wisshak M., Schönberg C. H., Form A., Freiwald A. Sponge bioerosion accelerated by ocean acidification across species and latitudes? // Helgoland Marine Research. – 2014. – Vol. 68. – P. 253–262. – https://doi.org/10.1007/s10152-014-0385-4
Wolfe K., Kenyon T. M., Mumby P. J. The biology and ecology of coral rubble and implications for the future of coral reefs // Coral Reefs. – 2021. – Vol. 40, no. 6. – P. 1769–1806. – https://doi.org/10.1007/s00338-021-02185-9
Wörheide G., Dohrmann M., Erpenbeck D., Larroux C., Maldonado M., Voigt O., Borchiellini C., Lavrov D. V. Deep phylogeny and evolution of sponges (phylum Porifera) // Advances in Marine Biology. – 2012. – Vol. 61. – P. 1–78. – https://doi.org/10.1016/B978-0-12-387787-1.00007-6
Wörheide G., Erpenbeck D., Menke C. The Sponge Barcoding Project: aiding in the identification and description of poriferan taxa // Porifera Research: Biodiversity, Innovation and Sustainability / Eds: M. R. Custódio [et al.]. – Rio de Janeiro : Museu Nacional, 2007. – P. 123–128. – (Série Livros ; 28).
Wulff J. Ecological interactions and the distribution, abundance, and diversity of sponges // Advances in Marine Biology. – 2012. – Vol. 61. – P. 273–344. – https://doi.org/10.1016/B978-0-12-387787-1.00003-9
Wulff J. L. Ecological interactions of marine sponges // Canadian Journal of Zoology. – 2006. – Vol. 84, no. 2. – P. 146–166. – https://doi.org/10.1139/Z06-019
Xavier J. R., Rachello-Dolmen P. G., Parra-Velandia F., Schönberg C. H. L., Breeuwer J. A. J., Van Soest R. W. M. Molecular evidence of cryptic speciation in the «cosmopolitan» excavating sponge Cliona celata (Porifera, Clionaidae) // Molecular Phylogenetics and Evolution. – 2010. – Vol. 56, iss. 1. – P. 13–20. – https://doi.org/10.1016/j.ympev.2010.03.030
Xiong X., Cao Y., Li Z., Jiao Y., Du X., Zheng Z. Transcriptome analysis reveals the transition and crosslinking of immune response and biomineralization in shell damage repair in pearl oyster // Aquaculture Reports. – 2021. – Vol. 21. – Art. no. 100851. – https://doi.org/10.1016/j.aqrep.2021.100851
Yarra T., Blaxter M., Clark M. S. A bivalve biomineralization toolbox // Molecular Biology and Evolution. – 2021. – Vol. 38, no. 9. – P. 4043–4055. – https://doi.org/10.1093/molbev/msab153
Zhai S., Yang B., Zhang F., Li Q., Liu S. Estimation of genetic parameters for resistance to Vibrio alginolyticus infection in the Pacific oyster (Crassostrea gigas) // Aquaculture. – 2021. – Vol. 538. – Art. 736545. – https://doi.org/10.1016/j.aquacultural.2021.736545
Zhang G., Fang X., Guo X., Li L. I., Luo R., Xu F., Yang P., Zhang L., Wang X., Qi H., Xiong Z., Que H.,
Xie Y., Holland P. W. H., Paps J., Zhu Y., Wu F., Chen Y., Wang J., Peng C., Meng J., Yang L., Liu J., Wen B., Wang J. The oyster genome reveals stress adaptation and complexity of shell formation // Nature. – 2012. – Vol. 490, no. 7418. – P. 49–54. – https://doi.org/10.1038/nature11413
Zhang T., Qiu L., Sun Z. Wang L., Zhou Z., Liu R., Yue F., Sun R., Song L. The specifically enhanced cellular immune responses in Pacific oyster (Crassostrea gigas) against secondary challenge with Vibrio splendidus // Developmental & Comparative Immunology. – 2014. – Vol. 45, no. 1. – P. 141–150. – https://doi.org/10.1016/j.dci.2014.02.015
Zundelevich A., Lazar B., Ilan M. Chemical versus mechanical bioerosion of coral reefs by boring sponges – lessons from Pione cf. Vastifica // Journal of Experimental Biology. – 2007. – Vol. 210, no. 1. – P. 91–96. – https://doi.org/10.1242/jeb.02627